Interferometric excitation fluorescence lifetime imaging microscopy

. 2024 Sep 13 ; 15 (1) : 8019. [epub] 20240913

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39271727

Grantová podpora
101030656 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
22-03875S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
22-03875S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 39271727
PubMed Central PMC11399241
DOI 10.1038/s41467-024-52333-2
PII: 10.1038/s41467-024-52333-2
Knihovny.cz E-zdroje

Fluorescence lifetime imaging microscopy (FLIM) is a well-established technique with numerous imaging applications. Yet, one of the limitations of FLIM is that it only provides information about the emitting state. Here, we present an extension of FLIM by interferometric measurement of fluorescence excitation spectra. Interferometric Excitation Fluorescence Lifetime Imaging Microscopy (ixFLIM) reports on the correlation of the excitation spectra and emission lifetime, providing the correlation between the ground-state absorption and excited-state emission. As such, it extends the applicability of FLIM and removes some of its limitations. We introduce ixFLIM on progressively more complex systems, directly compare it to standard FLIM, and apply it to quantitative resonance energy transfer imaging from a single measurement.

Zobrazit více v PubMed

Ouyang, Y., Liu, Y., Wang, Z. M., Liu, Z. & Wu, M. FLIM as a promising tool for cancer diagnosis and treatment monitoring. Nano-Micro Lett.13, 1–27 (2021).10.1007/s40820-021-00653-z PubMed DOI PMC

Herman, P., Holoubek, A. & Brodska, B. Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochim. Biophys. Acta BBA—Gen. Subj.1863, 266–277 (2019).10.1016/j.bbagen.2018.10.016 PubMed DOI

Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2006).

Berezin, M. Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev.110, 2641–2684 (2010). 10.1021/cr900343z PubMed DOI PMC

van Munster, E. B. & Gadella, T. W. J. In Microscopy Techniques (ed. Rietdorf, J.) 143–175 (Springer, 2005).

Suhling, K., French, P. M. W. & Phillips, D. Time-resolved fluorescence microscopy. Photochem. Photobiol. Sci.4, 13–22 (2005). 10.1039/b412924p PubMed DOI

Chorvat, D. Jr & Chorvatova, A. Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues. Laser Phys. Lett.6, 175–193 (2009).10.1002/lapl.200810132 DOI

Alexiev, U., Volz, P., Boreham, A. & Brodwolf, R. Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm.116, 111–124 (2017). 10.1016/j.ejpb.2017.01.005 PubMed DOI

Suhling, K. et al. Imaging the environment of green fluorescent protein. Biophys. J.83, 3589–3595 (2002). 10.1016/S0006-3495(02)75359-9 PubMed DOI PMC

Provenzano, P. P., Eliceiri, K. W. & Keely, P. J. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin. Exp. Metastasis26, 357–370 (2009). 10.1007/s10585-008-9204-0 PubMed DOI

Sun, Y., Hays, N. M., Periasamy, A., Davidson, M. W. & Day, R. N. In Methods in Enzymology (ed. Conn, P. M.) Ch. 19, 504 371–391 (Academic Press, 2012). PubMed PMC

Sun, Y., Day, R. N. & Periasamy, A. Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat. Protoc.6, 1324–1340 (2011). 10.1038/nprot.2011.364 PubMed DOI PMC

Strachotová, D., Holoubek, A., Wolfová, K., Brodská, B. & Heřman, P. Cytoplasmic localization of Mdm2 in cells expressing mutated NPM is mediated by p53. FEBS J.290, 4281–4299 (2023). 10.1111/febs.16810 PubMed DOI

Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nat. Biotechnol.21, 1387–1395 (2003). 10.1038/nbt896 PubMed DOI

Kremers, G.-J., Hazelwood, K. L., Murphy, C. S., Davidson, M. W. & Piston, D. W. Photoconversion in orange and red fluorescent proteins. Nat. Methods6, 355–358 (2009). 10.1038/nmeth.1319 PubMed DOI PMC

Popleteeva, M. et al. Fast and simple spectral FLIM for biochemical and medical imaging. Opt. Express23, 23511–23525 (2015). 10.1364/OE.23.023511 PubMed DOI

Williams, G. O. S. et al. Full spectrum fluorescence lifetime imaging with 0.5 nm spectral and 50 ps temporal resolution. Nat. Commun.12, 6616 (2021). 10.1038/s41467-021-26837-0 PubMed DOI PMC

Perri, A. et al. Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach. Opt. Express26, 2270–2279 (2018). 10.1364/OE.26.002270 PubMed DOI PMC

Liisberg, M. B. & Vosch, T. Time gated Fourier transform spectroscopy as a technique for disentangling short- and long-lived luminescence. Commun. Mater.4, 1–8 (2023).10.1038/s43246-023-00386-z DOI

Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J.94, L14–L16 (2008). 10.1529/biophysj.107.120154 PubMed DOI PMC

Becker, W., Braun, L., Jubghans, C., Bergmann, A. & Becker& Hickl GmbH. FLIM with Excitation-Wavelength Multiplexing (2020).

Zhao, M., Huang, R. & Peng, L. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy. Opt. Express20, 26806 (2012). 10.1364/OE.20.026806 PubMed DOI PMC

Zhao, M., Li, Y. & Peng, L. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging. Opt. Express22, 10221–10232 (2014). 10.1364/OE.22.010221 PubMed DOI PMC

Hybl, J. D., Albrecht Ferro, A. & Jonas, D. M. Two-dimensional Fourier transform electronic spectroscopy. J. Chem. Phys.115, 6606 (2001).10.1063/1.1398579 PubMed DOI

Tekavec, P. F., Lott, G. A. & Marcus, A. H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys.127, 214307 (2007). 10.1063/1.2800560 PubMed DOI

Piatkowski, L., Gellings, E. & van Hulst, N. F. Broadband single-molecule excitation spectroscopy. Nat. Commun.7, 10411 (2016). 10.1038/ncomms10411 PubMed DOI PMC

Fersch, D. et al. Single-molecule ultrafast fluorescence-detected pump–probe microscopy. J. Phys. Chem. Lett.14, 4923–4932 (2023). 10.1021/acs.jpclett.3c00839 PubMed DOI

Thyrhaug, E. et al. Single-molecule excitation–emission spectroscopy. Proc. Natl Acad. Sci.116, 4064–4069 (2019). 10.1073/pnas.1808290116 PubMed DOI PMC

Becker, H. The Bh TCSPC Handbook. 10th edn (Becker and Hickel, GmBH, 2023).

Perri, A. et al. Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer. Opt. Express25, A483–A490 (2017). 10.1364/OE.25.00A483 PubMed DOI

Smith, J. C. & Chance, B. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart submitochondrial particles. J. Membr. Biol.46, 255–282 (1979). 10.1007/BF01868767 PubMed DOI

Holoubek, A., Večeř, J., Opekarová, M. & Sigler, K. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H+-ATPase reconstituted into vesicles. Biochim. Biophys. Acta BBA—Biomembr.1609, 71–79 (2003).10.1016/S0005-2736(02)00656-9 PubMed DOI

Bashford, C. L., Chance, B., Smith, J. C. & Yoshida, T. The behavior of oxonol dyes in phospholipid dispersions. Biophys. J.25, 63–85 (1979). 10.1016/S0006-3495(79)85278-9 PubMed DOI PMC

Smith, J. C., Hallidy, L. & Topp, M. R. The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles. J. Membr. Biol.60, 173–185 (1981). 10.1007/BF01992556 PubMed DOI

Nishi, K., Yamasaki, K. & Otagiri, M. In Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins (eds. Hoeger, U. & Harris, J. R.) 383–397 (Springer International Publishing, 2020).

Förster Th. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys.437, 55–75 (1948).10.1002/andp.19484370105 DOI

Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Wiley-Blackwell, 2002).

Cunningham, P. D. et al. Resonance energy transfer in DNA duplexes labeled with localized dyes. J. Phys. Chem. B118, 14555–14565 (2014). 10.1021/jp5065006 PubMed DOI

Heussman, D. et al. Measuring local conformations and conformational disorder of (Cy3)2 dimer labeled DNA fork junctions using absorbance, circular dichroism and two-dimensional fluorescence spectroscopy. Faraday Discuss216, 211–235 (2019). 10.1039/C8FD00245B PubMed DOI PMC

Sanborn, M. E., Connolly, B. K., Gurunathan, K. & Levitus, M. Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA. J. Phys. Chem. B111, 11064–11074 (2007). 10.1021/jp072912u PubMed DOI

Sarangi, M. K. et al. Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A. Nucleic Acids Res.47, 2871–2883 (2019). 10.1093/nar/gkz022 PubMed DOI PMC

Hohng, S., Joo, C. & Ha, T. Single-molecule three-color FRET. Biophys. J.87, 1328–1337 (2004). 10.1529/biophysj.104.043935 PubMed DOI PMC

Woźniak, A. K., Schröder, G. F., Grubmüller, H., Seidel, C. A. M. & Oesterhelt, F. Single-molecule FRET measures bends and kinks in DNA. Proc. Natl Acad. Sci.105, 18337–18342 (2008). 10.1073/pnas.0800977105 PubMed DOI PMC

Lee, W., von Hippel, P. H. & Marcus, A. H. Internally labeled Cy3/Cy5 DNA constructs show greatly enhanced photo-stability in single-molecule FRET experiments. Nucleic Acids Res.42, 5967–5977 (2014). 10.1093/nar/gku199 PubMed DOI PMC

Hellenkamp, B. et al. Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat. Methods15, 669–676 (2018). 10.1038/s41592-018-0085-0 PubMed DOI PMC

Cooper, G. M. The Cell (Sinauer Associates, 2000).

Carlsson, N., Jonsson, F., Wilhelmsson, L. M., Nordén, B. & Åkerman, B. DNA hosted and aligned in aqueous interstitia of a lamellar liquid crystal—a membrane–biomacromolecule interaction model system. Soft Matter9, 7951–7959 (2013).10.1039/c3sm50982f DOI

Agbavwe, C. & Somoza, M. M. Sequence-dependent fluorescence of cyanine dyes on microarrays. PLoS ONE6, e22177 (2011). 10.1371/journal.pone.0022177 PubMed DOI PMC

Kretschy, N., Sack, M. & Somoza, M. M. Sequence-dependent fluorescence of Cy3- and Cy5-labeled double-stranded DNA. Bioconjug. Chem.27, 840–848 (2016). 10.1021/acs.bioconjchem.6b00053 PubMed DOI PMC

Laptenok, S. P. et al. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence. Phys. Chem. Chem. Phys.12, 7593–7602 (2010). 10.1039/b919700a PubMed DOI

Lambert, T. J. FPbase: a community-editable fluorescent protein database. Nat. Methods16, 277–278 (2019). 10.1038/s41592-019-0352-8 PubMed DOI

Iqbal, A. et al. Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. Proc. Natl Acad. Sci.105, 11176–11181 (2008). 10.1073/pnas.0801707105 PubMed DOI PMC

Allison, S. A. & Schurr, M. J. Torsion dynamics and depolarization of fluorescence of linear macromolecules I. Theory and application to DNAt. Chem. Phys.41, 35–59 (1979).10.1016/0301-0104(79)80131-7 DOI

Lee, H. H. et al. Crystal structure of human nucleophosmin-core reveals plasticity of the pentamer–pentamer interface. Proteins Struct. Funct. Bioinform.69, 672–678 (2007).10.1002/prot.21504 PubMed DOI

Šašinková, M. et al. NSC348884 cytotoxicity is not mediated by inhibition of nucleophosmin oligomerization. Sci. Rep.11, 1084 (2021). 10.1038/s41598-020-80224-1 PubMed DOI PMC

Kremers, G.-J., Goedhart, J., van Munster, E. B. & Gadella, T. W. J. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry45, 6570–6580 (2006). 10.1021/bi0516273 PubMed DOI

Heesink, G. et al. Quantification of dark protein populations in fluorescent proteins by two-color coincidence detection and nanophotonic manipulation. J. Phys. Chem. B126, 7906–7915 (2022). 10.1021/acs.jpcb.2c04627 PubMed DOI PMC

Bloch, Y. & Savvides, S. N. mVenus released from fusion protein. RSCB Protein Database10.2210/pdb7PNN/pdb (2021).

Dall’Osto, L., Bassi, R. & Ruban, A. In Plastid Biology (eds. Theg, S. M. & Wollman, F.-A.) 393–435 (Springer, 2014).

Smith, B. C. Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 2011).

Davis, C. C. & King, T. A. Single photon counting pileup corrections for time‐varying light sources. Rev. Sci. Instrum.41, 407–408 (1970).10.1063/1.1684528 DOI

Holoubek, A. et al. AML-related NPM mutations drive p53 delocalization into the cytoplasm with possible impact on p53-dependent stress response. Cancers13, 3266 (2021). 10.3390/cancers13133266 PubMed DOI PMC

Wientjes, E., Philippi, J., Borst, J. W. & van Amerongen, H. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. Biochim. Biophys. Acta BBA—Bioenerg.1858, 259–265 (2017).10.1016/j.bbabio.2017.01.008 PubMed DOI

Brida, D., Manzoni, C. & Cerullo, G. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Opt. Lett.37, 3027 (2012). 10.1364/OL.37.003027 PubMed DOI

Réhault, J., Maiuri, M., Oriana, A. & Cerullo, G. Two-dimensional electronic spectroscopy with birefringent wedges. Rev. Sci. Instrum.85, 123107 (2014). 10.1063/1.4902938 PubMed DOI

Mooney, J. & Kambhampati, P. Get the basics right: jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra. J. Phys. Chem. Lett.4, 3316–3318 (2013).10.1021/jz401508t PubMed DOI

Brodská, B., Holoubek, A., Otevřelová, P. & Kuželová, K. Low-dose actinomycin-D induces redistribution of wild-type and mutated nucleophosmin followed by cell death in leukemic cells. J. Cell. Biochem.117, 1319–1329 (2016). 10.1002/jcb.25420 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...