AML-Related NPM Mutations Drive p53 Delocalization into the Cytoplasm with Possible Impact on p53-Dependent Stress Response
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-04099S
Grantová Agentura České Republiky
00023736
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34209894
PubMed Central
PMC8269334
DOI
10.3390/cancers13133266
PII: cancers13133266
Knihovny.cz E-zdroje
- Klíčová slova
- FLIM-FRET, Selinexor, acute myeloid leukemia, mutation, nucleophosmin, p53, photoconversion,
- Publikační typ
- časopisecké články MeSH
Nucleophosmin (NPM) interaction with tumor suppressor p53 is a part of a complex interaction network and considerably affects cellular stress response. The impact of NPM1 mutations on its interaction with p53 has not been investigated yet, although consequences of NPMmut-induced p53 export to the cytoplasm are important for understanding the oncogenic potential of these mutations. We investigated p53-NPM interaction in live HEK-293T cells by FLIM-FRET and in cell lysates by immunoprecipitation. eGFP lifetime-photoconversion was used to follow redistribution dynamics of NPMmut and p53 in Selinexor-treated cells. We confirmed the p53-NPMwt interaction in intact cells and newly documented that this interaction is not compromised by the NPM mutation causing displacement of p53 to the cytoplasm. Moreover, the interaction was not abolished for non-oligomerizing NPM variants with truncated oligomerization domain, suggesting that oligomerization is not essential for interaction of NPM forms with p53. Inhibition of the nuclear exporter XPO1 by Selinexor caused expected nuclear relocalization of both NPMmut and p53. However, significantly different return rates of these proteins indicate nontrivial mechanism of p53 and NPMmut cellular trafficking. The altered p53 regulation in cells expressing NPMmut offers improved understanding to help investigational strategies targeting these mutations.
Zobrazit více v PubMed
Yang K., Yang J., Yi J. Nucleolar Stress: Hallmarks, sensing mechanism and diseases. Cell Stress. 2018;2:125–140. doi: 10.15698/cst2018.06.139. PubMed DOI PMC
Colombo E., Alcalay M., Pelicci P.G. Nucleophosmin and its complex network: A possible therapeutic target in hematological diseases. Oncogene. 2011;30:2595–2609. doi: 10.1038/onc.2010.646. PubMed DOI
Colombo E., Marine J.C., Danovi D., Falini B., Pelicci P.G. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat. Cell Biol. 2002;4:529–533. doi: 10.1038/ncb814. PubMed DOI
Lambert B., Buckle M. Characterisation of the interface between nucleophosmin (NPM) and p53: Potential role in p53 stabilisation. FEBS Lett. 2006;580:345–350. doi: 10.1016/j.febslet.2005.12.025. PubMed DOI
Daniely Y., Dimitrova D.D., Borowiec J.A. Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol. Cell. Biol. 2002;22:6014–6022. doi: 10.1128/MCB.22.16.6014-6022.2002. PubMed DOI PMC
Dhar S.K., St Clair D.K. Nucleophosmin blocks mitochondrial localization of p53 and apoptosis. J. Biol. Chem. 2009;284:16409–16418. doi: 10.1074/jbc.M109.005736. PubMed DOI PMC
Saxena A., Rorie C.J., Dimitrova D., Daniely Y., Borowiec J.A. Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. Oncogene. 2006;25:7274–7288. doi: 10.1038/sj.onc.1209714. PubMed DOI
Matt S., Hofmann T.G. The DNA damage-induced cell death response: A roadmap to kill cancer cells. Cell Mol. Life Sci. 2016;73:2829–2850. doi: 10.1007/s00018-016-2130-4. PubMed DOI PMC
Lindstrom M.S. NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem. Res. Int. 2011;2011:195209. doi: 10.1155/2011/195209. PubMed DOI PMC
Brodska B., Sasinkova M., Kuzelova K. Nucleophosmin in leukemia: Consequences of anchor loss. Int. J. Biochem. Cell Biol. 2019;111:52–62. doi: 10.1016/j.biocel.2019.04.007. PubMed DOI
Meani N., Alcalay M. Role of nucleophosmin in acute myeloid leukemia. Expert Rev. Anticancer Ther. 2009;9:1283–1294. doi: 10.1586/era.09.84. PubMed DOI
Federici L., Falini B. Nucleophosmin mutations in acute myeloid leukemia: A tale of protein unfolding and mislocalization. Protein Sci. 2013;22:545–556. doi: 10.1002/pro.2240. PubMed DOI PMC
Michael D., Oren M. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 2003;13:49–58. doi: 10.1016/S1044-579X(02)00099-8. PubMed DOI
Brooks C.L., Gu W. P53 Regulation by Ubiquitin. FEBS Lett. 2011;585:2803–2809. doi: 10.1016/j.febslet.2011.05.022. PubMed DOI PMC
Marine J.C., Lozano G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010;17:93–102. doi: 10.1038/cdd.2009.68. PubMed DOI
Gjerset R.A. DNA damage, p14ARF, nucleophosmin (NPM/B23), and cancer. J. Mol. Histol. 2006;37:239–251. doi: 10.1007/s10735-006-9040-y. PubMed DOI
Vogelstein B., Lane D., Levine A.J. Surfing the p53 network. Nature. 2000;408:307–310. doi: 10.1038/35042675. PubMed DOI
Gallagher S.J., Kefford R.F., Rizos H. The ARF tumour suppressor. Int. J. Biochem. Cell Biol. 2006;38:1637–1641. doi: 10.1016/j.biocel.2006.02.008. PubMed DOI
Korgaonkar C., Hagen J., Tompkins V., Frazier A.A., Allamargot C., Quelle F.W., Quelle D.E. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol. Cell. Biol. 2005;25:1258–1271. doi: 10.1128/MCB.25.4.1258-1271.2005. PubMed DOI PMC
Nalabothula N., Indig F.E., Carrier F. The Nucleolus Takes Control of Protein Trafficking Under Cellular Stress. Mol. Cell. Pharmacol. 2010;2:203–212. PubMed PMC
Li Y.P., Busch R.K., Valdez B.C., Busch H. C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur. J. Biochem. 1996;237:153–158. doi: 10.1111/j.1432-1033.1996.0153n.x. PubMed DOI
Mitrea D.M., Cika J.A., Guy C.S., Ban D., Banerjee P.R., Stanley C.B., Nourse A., Deniz A.A., Kriwacki R.W. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. Elife. 2016:5. doi: 10.7554/eLife.13571. PubMed DOI PMC
Chen D., Huang S. Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J. Cell Biol. 2001;153:169–176. doi: 10.1083/jcb.153.1.169. PubMed DOI PMC
Olson M.O., Dundr M. The moving parts of the nucleolus. Histochem. Cell Biol. 2005;123:203–216. doi: 10.1007/s00418-005-0754-9. PubMed DOI
Phair R.D., Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature. 2000;404:604–609. doi: 10.1038/35007077. PubMed DOI
Holoubek A., Heřman P., Sýkora J., Brodská B., Humpolickova J., Kráčmarová M., Gášková D., Hof M., Kuzelová K. Monitoring of nucleophosmin oligomerization in live cells. Methods Appl. Fluoresc. 2018;6:035016. doi: 10.1088/2050-6120/aaccb9. PubMed DOI
Sasinkova M., Herman P., Holoubek A., Strachotova D., Otevrelova P., Grebenova D., Kuzelova K., Brodska B. NSC348884 cytotoxicity is not mediated by inhibition of nucleophosmin oligomerization. Sci. Rep. 2021;11:1084. doi: 10.1038/s41598-020-80224-1. PubMed DOI PMC
Sasinkova M., Holoubek A., Otevrelova P., Kuzelova K., Brodska B. AML-associated mutation of nucleophosmin compromises its interaction with nucleolin. Int. J. Biochem. Cell Biol. 2018;103:65–73. doi: 10.1016/j.biocel.2018.08.008. PubMed DOI
Chen Y., Hu J. Nucleophosmin1 (NPM1) abnormality in hematologic malignancies, and therapeutic targeting of mutant NPM1 in acute myeloid leukemia. Ther. Adv. Hematol. 2020;11 doi: 10.1177/2040620719899818. PubMed DOI PMC
Falini B., Mecucci C., Tiacci E., Alcalay M., Rosati R., Pasqualucci L., La Starza R., Diverio D., Colombo E., Santucci A., et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 2005;352:254–266. doi: 10.1056/NEJMoa041974. PubMed DOI
Bullinger L., Dohner K., Dohner H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J. Clin. Oncol. 2017;35:934–946. doi: 10.1200/JCO.2016.71.2208. PubMed DOI
Forghieri F., Comoli P., Marasca R., Potenza L., Luppi M. Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives. Int. J. Mol. Sci. 2018;19:3492. doi: 10.3390/ijms19113492. PubMed DOI PMC
Falini B., Brunetti L., Martelli M.P. How I diagnose and treat NPM1-mutated AML. Blood. 2021;137:589–599. doi: 10.1182/blood.2020008211. PubMed DOI
Bolli N., De Marco M.F., Martelli M.P., Bigerna B., Pucciarini A., Rossi R., Mannucci R., Manes N., Pettirossi V., Pileri S.A., et al. A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF. Leukemia. 2009;23:501–509. doi: 10.1038/leu.2008.326. PubMed DOI
Brodska B., Kracmarova M., Holoubek A., Kuzelova K. Localization of AML-related nucleophosmin mutant depends on its subtype and is highly affected by its interaction with wild-type NPM. PLoS ONE. 2017;12:e0175175. doi: 10.1371/journal.pone.0175175. PubMed DOI PMC
Falini B., Bolli N., Shan J., Martelli M.P., Liso A., Pucciarini A., Bigerna B., Pasqualucci L., Mannucci R., Rosati R., et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood. 2006;107:4514–4523. doi: 10.1182/blood-2005-11-4745. PubMed DOI
Falini B., Albiero E., Bolli N., De Marco M.F., Madeo D., Martelli M., Nicoletti I., Rodeghiero F. Aberrant cytoplasmic expression of C-terminal-truncated NPM leukaemic mutant is dictated by tryptophans loss and a new NES motif. Leukemia. 2007;21:2052–2054. doi: 10.1038/sj.leu.2404839. PubMed DOI
Den Besten W., Kuo M.L., Williams R.T., Sherr C.J. Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle. 2005;4:1593–1598. doi: 10.4161/cc.4.11.2174. PubMed DOI
O’Brate A., Giannakakou P. The importance of p53 location: Nuclear or cytoplasmic zip code? Drug Resist. Updat. 2003;6:313–322. doi: 10.1016/j.drup.2003.10.004. PubMed DOI
Comel A., Sorrentino G., Capaci V., Del Sal G. The cytoplasmic side of p53′s oncosuppressive activities. FEBS Lett. 2014;588:2600–2609. doi: 10.1016/j.febslet.2014.04.015. PubMed DOI
Senapedis W.T., Baloglu E., Landesman Y. Clinical translation of nuclear export inhibitors in cancer. Semin. Cancer Biol. 2014;27:74–86. doi: 10.1016/j.semcancer.2014.04.005. PubMed DOI
Lane D.P., Cheok C.F., Lain S. P53-Based Cancer Therapy. Cold Spring Harb. Perspect. Biol. 2010;2:a001222. doi: 10.1101/cshperspect.a001222. PubMed DOI PMC
Marcus J.M., Burke R.T., Doak A.E., Park S., Orth J.D. Loss of p53 expression in cancer cells alters cell cycle response after inhibition of exportin-1 but does not prevent cell death. Cell Cycle. 2018;17:1329–1344. doi: 10.1080/15384101.2018.1480224. PubMed DOI PMC
Mao L., Yang Y. Targeting the nuclear transport machinery by rational drug design. Curr. Pharm. Des. 2013;19:2318–2325. doi: 10.2174/1381612811319120018. PubMed DOI
Nguyen K.T., Holloway M.P., Altura R.A. The CRM1 nuclear export protein in normal development and disease. Int. J. Biochem. Mol. Biol. 2012;3:137–151. PubMed PMC
Das A., Wei G., Parikh K., Liu D. Selective inhibitors of nuclear export (SINE) in hematological malignancies. Exp. Hematol. Oncol. 2015;4 doi: 10.1186/s40164-015-0002-5. PubMed DOI PMC
Zhang Y., Xiong Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science. 2001;292:1910–1915. doi: 10.1126/science.1058637. PubMed DOI
Stommel J.M., Marchenko N.D., Jimenez G.S., Moll U.M., Hope T.J., Wahl G.M. A leucine-rich nuclear export signal in the p53 tetramerization domain: Regulation of subcellular localization and p53 activity by NES masking. EMBO J. 1999;18:1660–1672. doi: 10.1093/emboj/18.6.1660. PubMed DOI PMC
Turner J.G., Dawson J., Sullivan D.M. Nuclear export of proteins and drug resistance in cancer. Biochem. Pharmacol. 2012;83:1021–1032. doi: 10.1016/j.bcp.2011.12.016. PubMed DOI PMC
Gravina G.L., Senapedis W., McCauley D., Baloglu E., Shacham S., Festuccia C. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J. Hematol. Oncol. 2014;7:1–9. doi: 10.1186/s13045-014-0085-1. PubMed DOI PMC
Gu X., Ebrahem Q., Mahfouz R.Z., Hasipek M., Enane F., Radivoyevitch T., Rapin N., Przychodzen B., Hu Z., Balusu R., et al. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J. Clin. Investig. 2018;128:4260–4279. doi: 10.1172/JCI97117. PubMed DOI PMC
Kunchala P., Kuravi S., Jensen R., McGuirk J., Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev. 2018;32:167–183. doi: 10.1016/j.blre.2017.11.001. PubMed DOI
Brodska B., Holoubek A., Otevrelova P., Kuzelova K. Low-Dose Actinomycin-D Induces Redistribution of Wild-Type and Mutated Nucleophosmin Followed by Cell Death in Leukemic Cells. J. Cell. Biochem. 2016;117:1319–1329. doi: 10.1002/jcb.25420. PubMed DOI
Grebenova D., Holoubek A., Roselova P., Obr A., Brodska B., Kuzelova K. PAK1, PAK1 Delta 15, and PAK2: Similarities, differences and mutual interactions. Sci. Rep. 2019;9:17171. doi: 10.1038/s41598-019-53665-6. PubMed DOI PMC
Herman P., Holoubek A., Brodska B. Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochim. Biophys. Acta Gen. Subj. 2019;1863:266–277. doi: 10.1016/j.bbagen.2018.10.016. PubMed DOI
Patting M. Evaluation of Time-Resolved Fluorescence Data: Typical Methods and Problems, Standardization and Quality Assurance in Fluorescence Measurements I. Springer Ser. Fluoresc. 2008;5:233–258.
Strachotova D., Holoubek A., Kucerova H., Benda A., Humpolickova J., Vachova L., Palkova Z. Ato protein interactions in yeast plasma membrane revealed by fluorescence lifetime imaging (FLIM) Biochim. Biophys. Acta. 2012;1818:2126–2134. doi: 10.1016/j.bbamem.2012.05.005. PubMed DOI
Heikal A., Hess S., Webb W. Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent proteins (EGFP): Acid-base specifity. Chem. Phys. 2001;274:37–55. doi: 10.1016/S0301-0104(01)00486-4. DOI
Hingorani K., Szebeni A., Olson M.O. Mapping the functional domains of nucleolar protein B23. J. Biol. Chem. 2000;275:24451–24457. doi: 10.1074/jbc.M003278200. PubMed DOI
Enomoto T., Lindstrom M.S., Jin A., Ke H., Zhang Y. Essential role of the B23/NPM core domain in regulating ARF binding and B23 stability. J. Biol. Chem. 2006;281:18463–18472. doi: 10.1074/jbc.M602788200. PubMed DOI
Wallrabe H., Periasamy A. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 2005;16:19–27. doi: 10.1016/j.copbio.2004.12.002. PubMed DOI
Bastiaens P.I., Squire A. Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends Cell Biol. 1999;9:48–52. doi: 10.1016/S0962-8924(98)01410-X. PubMed DOI
Kenworthy A.K. Molecular Imaging: FRET Microscopy and Spectroscopy. In: Periasamy A., Day R., editors. Photobleaching FRET Microscopy. Oxford University Press; New York, NY, USA: 2005. p. 146.
Lakowicz J.R. Principles of Fluorescence Spectroscopy. Springer; New York, NY, USA: 2006.
Suhling K., Siegel J., Phillips D., French P.M., Leveque-Fort S., Webb S.E., Davis D.M. Imaging the environment of green fluorescent protein. Biophys. J. 2002;83:3589–3595. doi: 10.1016/S0006-3495(02)75359-9. PubMed DOI PMC
Kojima K., Kornblau S.M., Ruvolo V., Dilip A., Duvvuri S., Davis R.E., Zhang M., Wang Z., Coombes K.R., Zhang N., et al. Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood. 2013;121:4166–4174. doi: 10.1182/blood-2012-08-447581. PubMed DOI PMC
Garzon R., Savona M., Baz R., Andreeff M., Gabrail N., Gutierrez M., Savoie L., Mau-Sorensen P.M., Wagner-Johnston N., Yee K., et al. A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. Blood. 2017;129:3165–3174. doi: 10.1182/blood-2016-11-750158. PubMed DOI PMC
Vousden K.H., Vande Woude G.F. The ins and outs of p53. Nat. Cell Biol. 2000;2:E178–E180. doi: 10.1038/35036427. PubMed DOI
Nakayama R., Zhang Y.X., Czaplinski J.T., Anatone A.J., Sicinska E.T., Fletcher J.A., Demetri G.D., Wagner A.J. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581–16592. doi: 10.18632/oncotarget.7667. PubMed DOI PMC
Ferreira B.I., Cautain B., Grenho I., Link W. Small Molecule Inhibitors of CRM1. Front. Pharmacol. 2020;11:625. doi: 10.3389/fphar.2020.00625. PubMed DOI PMC
Mahipal A., Malafa M. Importins and exportins as therapeutic targets in cancer. Pharmacol. Ther. 2016;164:135–143. doi: 10.1016/j.pharmthera.2016.03.020. PubMed DOI
Otevrelova P., Brodska B. Chemotherapy-induced survivin regulation in acute myeloid leukemia. Appl. Sci. 2021;11:460. doi: 10.3390/app11010460. DOI
Russo L.C., Ferruzo P.Y.M., Forti F.L. Nucleophosmin Protein Dephosphorylation by DUSP3 Is a Fine-Tuning Regulator of p53 Signaling to Maintain Genomic Stability. Front. Cell Dev. Biol. 2021;9:624933. doi: 10.3389/fcell.2021.624933. PubMed DOI PMC