PAK1, PAK1Δ15, and PAK2: similarities, differences and mutual interactions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31748572
PubMed Central
PMC6868145
DOI
10.1038/s41598-019-53665-6
PII: 10.1038/s41598-019-53665-6
Knihovny.cz E-zdroje
- MeSH
- buněčná adheze genetika fyziologie MeSH
- buněčné linie MeSH
- exony genetika MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- p21 aktivované kinasy genetika metabolismus MeSH
- pohyb buněk genetika fyziologie MeSH
- proliferace buněk genetika fyziologie MeSH
- signální transdukce genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- p21 aktivované kinasy MeSH
- PAK1 protein, human MeSH Prohlížeč
- PAK2 protein, human MeSH Prohlížeč
P21-activated kinases (PAK) are key effectors of the small GTPases Rac1 and Cdc42, as well as of Src family kinases. In particular, PAK1 has several well-documented roles, both kinase-dependent and kinase-independent, in cancer-related processes, such as cell proliferation, adhesion, and migration. However, PAK1 properties and functions have not been attributed to individual PAK1 isoforms: besides the full-length kinase (PAK1-full), a splicing variant lacking the exon 15 (PAK1Δ15) is annotated in protein databases. In addition, it is not clear if PAK1 and PAK2 are functionally overlapping. Using fluorescently tagged forms of human PAK1-full, PAK1Δ15, and PAK2, we analyzed their intracellular localization and mutual interactions. Effects of PAK inhibition (IPA-3, FRAX597) or depletion (siRNA) on cell-surface adhesion were monitored by real-time microimpedance measurement. Both PAK1Δ15 and PAK2, but not PAK1-full, were enriched in focal adhesions, indicating that the C-terminus might be important for PAK intracellular localization. Using coimmunoprecipitation, we documented direct interactions among the studied PAK group I members: PAK1 and PAK2 form homodimers, but all possible heterocomplexes were also detected. Interaction of PAK1Δ15 or PAK2 with PAK1-full was associated with extensive PAK1Δ15/PAK2 cleavage. The impedance measurements indicate, that PAK2 depletion slows down cell attachment to a surface, and that PAK1-full is involved in cell spreading. Altogether, our data suggest a complex interplay among different PAK group I members, which have non-redundant functions.
Zobrazit více v PubMed
Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994;367:40–46. doi: 10.1038/367040a0. PubMed DOI
Knaus UG, Morris S, Dong HJ, Chernoff J, Bokoch GM. Regulation of human leukocyte p21-activated kinases through G protein–coupled receptors. Science. 1995;269:221–223. doi: 10.1126/science.7618083. PubMed DOI
Bokoch GM. Biology of the p21-activated kinases. Annu. Rev. Biochem. 2003;72:743–781. doi: 10.1146/annurev.biochem.72.121801.161742. PubMed DOI
Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R. PAK signaling in oncogenesis. Oncogene. 2009;28:2545–2555. doi: 10.1038/onc.2009.119. PubMed DOI PMC
Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat. Rev. Cancer. 2014;14:13–25. doi: 10.1038/nrc3645. PubMed DOI PMC
Singh RR, Song C, Yang Z, Kumar R. Nuclear localization and chromatin targets of p21-activated kinase 1. J. Biol. Chem. 2005;280:18130–18137. doi: 10.1074/jbc.M412607200. PubMed DOI
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv. Cancer Res. 2016;130:137–209. doi: 10.1016/bs.acr.2016.01.002. PubMed DOI
Coniglio SJ, Zavarella S, Symons MH. Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol. Cell. Biol. 2008;28:4162–4172. doi: 10.1128/MCB.01532-07. PubMed DOI PMC
Arias-Romero LE, Chernoff J. A tale of two Paks. Biol. Cell. 2008;100:97–108. doi: 10.1042/BC20070109. PubMed DOI
Manser E, et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell. 1998;1:183–192. doi: 10.1016/S1097-2765(00)80019-2. PubMed DOI
Obermeier A, et al. PAK promotes morphological changes by acting upstream of Rac. EMBO J. 1998;17:4328–4339. doi: 10.1093/emboj/17.15.4328. PubMed DOI PMC
Lei M, et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 2000;102:387–397. doi: 10.1016/S0092-8674(00)00043-X. PubMed DOI
Zenke FT, King CC, Bohl BP, Bokoch GM. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 1999;274:32565–32573. doi: 10.1074/jbc.274.46.32565. PubMed DOI
Parrini MC, Lei M, Harrison SC, Mayer BJ. Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol. Cell. 2002;9:73–83. doi: 10.1016/S1097-2765(01)00428-2. PubMed DOI
Parrini MC. Untangling the complexity of PAK1 dynamics: The future challenge. Cell. Logist. 2012;2:78–83. doi: 10.4161/cl.19817. PubMed DOI PMC
Shin YJ, Kim YB, Kim JH. Protein kinase CK2 phosphorylates and activates p21-activated kinase 1. Mol. Biol. Cell. 2013;24:2990–2999. doi: 10.1091/mbc.e13-04-0204. PubMed DOI PMC
Harms FL, et al. Activating Mutations in PAK1, Encoding p21-Activated Kinase 1, Cause a Neurodevelopmental Disorder. Am. J. Hum. Genet. 2018;103:579–591. doi: 10.1016/j.ajhg.2018.09.005. PubMed DOI PMC
Combeau G, et al. The p21-activated kinase PAK3 forms heterodimers with PAK1 in brain implementing trans-regulation of PAK3 activity. J. Biol. Chem. 2012;287:30084–30096. doi: 10.1074/jbc.M112.355073. PubMed DOI PMC
Puto LA, Pestonjamasp K, King CC, Bokoch GM. p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J. Biol. Chem. 2003;278:9388–9393. doi: 10.1074/jbc.M208414200. PubMed DOI
Zhou GL, et al. Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol. Cell. Biol. 2003;23:8058–8069. doi: 10.1128/MCB.23.22.8058-8069.2003. PubMed DOI PMC
Tao J, Oladimeji P, Rider L, Diakonova M. PAK1-Nck regulates cyclin D1 promoter activity in response to prolactin. Mol. Endocrinol. 2011;25:1565–1578. doi: 10.1210/me.2011-0062. PubMed DOI PMC
Hammer A, Oladimeji P, De Las Casas LE, Diakonova M. Phosphorylation of tyrosine 285 of PAK1 facilitates betaPIX/GIT1 binding and adhesion turnover. FASEB J. 2015;29:943–959. doi: 10.1096/fj.14-259366. PubMed DOI PMC
Banerjee M, Worth D, Prowse DM, Nikolic M. Pak1 phosphorylation on t212 affects microtubules in cells undergoing mitosis. Curr. Biol. 2002;12:1233–1239. doi: 10.1016/S0960-9822(02)00956-9. PubMed DOI
King CC, et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1) J. Biol. Chem. 2000;275:41201–41209. doi: 10.1074/jbc.M006553200. PubMed DOI
Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science. 1997;276:1571–1574. PubMed
Hsu YH, Johnson DA, Traugh JA. Analysis of conformational changes during activation of protein kinase Pak2 by amide hydrogen/deuterium exchange. J. Biol. Chem. 2008;283:36397–36405. doi: 10.1074/jbc.M805581200. PubMed DOI PMC
Wilkes MC, Murphy SJ, Garamszegi N, Leof EB. Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3. Mol. Cell. Biol. 2003;23:8878–8889. doi: 10.1128/MCB.23.23.8878-8889.2003. PubMed DOI PMC
Chan WH, Yu JS, Yang SD. PAK2 is cleaved and activated during hyperosmotic shock-induced apoptosis via a caspase-dependent mechanism: evidence for the involvement of oxidative stress. J. Cell. Physiol. 1999;178:397–408. doi: 10.1002/(SICI)1097-4652(199903)178:3<397::AID-JCP14>3.0.CO;2-2. PubMed DOI
Tang TK, et al. Proteolytic cleavage and activation of PAK2 during UV irradiation-induced apoptosis in A431 cells. J. Cell. Biochem. 1998;70:442–454. doi: 10.1002/(SICI)1097-4644(19980915)70:4<442::AID-JCB2>3.0.CO;2-J. PubMed DOI
Roig J, Traugh JA. Cytostatic p21 G protein-activated protein kinase gamma-PAK. Vitam. Horm. 2001;62:167–198. doi: 10.1016/S0083-6729(01)62004-1. PubMed DOI
Marlin JW, Eaton A, Montano GT, Chang YW, Jakobi R. Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death. Neoplasia. 2009;11:286–297. doi: 10.1593/neo.81446. PubMed DOI PMC
Marlin JW, et al. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34. Mamm. Genome. 2011;22:306–317. doi: 10.1007/s00335-011-9326-6. PubMed DOI
Li X, et al. Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines. J. Biol. Chem. 2011;286:22291–22299. doi: 10.1074/jbc.M111.236596. PubMed DOI PMC
Ye DZ, Field J. PAK signaling in cancer. Cell. Logist. 2012;2:105–116. doi: 10.4161/cl.21882. PubMed DOI PMC
Huynh N, et al. Depletion of p21-activated kinase 1 up-regulates the immune system of APC(14/+) mice and inhibits intestinal tumorigenesis. BMC Cancer. 2017;17:431-017-3432-0. doi: 10.1186/s12885-017-3432-0. PubMed DOI PMC
Pandolfi A, et al. PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2015;126:1118–1127. doi: 10.1182/blood-2014-12-618801. PubMed DOI PMC
Semenova G, Chernoff J. Targeting PAK1. Biochem. Soc. Trans. 2017;45:79–88. doi: 10.1042/BST20160134. PubMed DOI PMC
Maruta H, Ahn MR. From bench (laboratory) to bed (hospital/home): How to explore effective natural and synthetic PAK1-blockers/longevity-promoters for cancer therapy. Eur. J. Med. Chem. 2017;142:229–243. doi: 10.1016/j.ejmech.2017.07.043. PubMed DOI
Zandvakili I, Lin Y, Morris JC, Zheng Y. Rho GTPases: Anti- or pro-neoplastic targets? Oncogene. 2017;36:3213–3222. doi: 10.1038/onc.2016.473. PubMed DOI PMC
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene. 2017;605:20–31. doi: 10.1016/j.gene.2016.12.014. PubMed DOI PMC
Liu X, et al. JMJD6 promotes melanoma carcinogenesis through regulation of the alternative splicing of PAK1, a key MAPK signaling component. Mol. Cancer. 2017;16:175-017-0744-2. PubMed PMC
Vilas GL, et al. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc. Natl. Acad. Sci. USA. 2006;103:6542–6547. doi: 10.1073/pnas.0600824103. PubMed DOI PMC
Kuzelova K, Grebenova D, Holoubek A, Roselova P, Obr A. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells. PLoS One. 2014;9:e92560. doi: 10.1371/journal.pone.0092560. PubMed DOI PMC
Licciulli S, et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J. Biol. Chem. 2013;288:29105–29114. doi: 10.1074/jbc.M113.510933. PubMed DOI PMC
Roselova P, Obr A, Holoubek A, Grebenova D, Kuzelova K. Adhesion structures in leukemia cells and their regulation by Src family kinases. Cell. Adh Migr. 2018;12:286–298. doi: 10.1080/19336918.2017.1344796. PubMed DOI PMC
Sells MA, et al. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 1997;7:202–210. doi: 10.1016/S0960-9822(97)70091-5. PubMed DOI
Parrini MC, Camonis J, Matsuda M, de Gunzburg J. Dissecting activation of the PAK1 kinase at protrusions in living cells. J. Biol. Chem. 2009;284:24133–24143. doi: 10.1074/jbc.M109.015271. PubMed DOI PMC
Nicholas NS, et al. PAK4 suppresses PDZ-RhoGEF activity to drive invadopodia maturation in melanoma cells. Oncotarget. 2016;7:70881–70897. doi: 10.18632/oncotarget.12282. PubMed DOI PMC
Manser E, et al. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell. Biol. 1997;17:1129–1143. doi: 10.1128/MCB.17.3.1129. PubMed DOI PMC
Frost JA, Khokhlatchev A, Stippec S, White MA, Cobb MH. Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J. Biol. Chem. 1998;273:28191–28198. doi: 10.1074/jbc.273.43.28191. PubMed DOI
Walter BN, et al. Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity. J. Biol. Chem. 1998;273:28733–28739. doi: 10.1074/jbc.273.44.28733. PubMed DOI
Lee N, et al. Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc. Natl. Acad. Sci. USA. 1997;94:13642–13647. doi: 10.1073/pnas.94.25.13642. PubMed DOI PMC
Mayhew MW, et al. Identification of phosphorylation sites in betaPIX and PAK1. J. Cell. Sci. 2007;120:3911–3918. doi: 10.1242/jcs.008177. PubMed DOI PMC
Sorrell, F. J., Kilian, L. M. & Elkins, J. M. Solution structures and biophysical analysis of full-length group A PAKs reveal they are monomeric and auto-inhibited in cis. Biochem. J (2019). PubMed PMC
Bright MD, Garner AP, Ridley AJ. PAK1 and PAK2 have different roles in HGF-induced morphological responses. Cell. Signal. 2009;21:1738–1747. doi: 10.1016/j.cellsig.2009.07.005. PubMed DOI
Kuzelova K, Grebenova D, Brodska B. Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes. J. Cell. Biochem. 2011;112:3334–3342. doi: 10.1002/jcb.23263. PubMed DOI
Deacon SW, et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem. Biol. 2008;15:322–331. doi: 10.1016/j.chembiol.2008.03.005. PubMed DOI PMC
Rennefahrt UE, et al. Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J. Biol. Chem. 2007;282:15667–15678. doi: 10.1074/jbc.M700253200. PubMed DOI
Elsherif L, et al. Potential compensation among group I PAK members in hindlimb ischemia and wound healing. PLoS One. 2014;9:e112239. doi: 10.1371/journal.pone.0112239. PubMed DOI PMC
Lee JH, et al. HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol. Cell. 2013;49:668–679. doi: 10.1016/j.molcel.2012.12.004. PubMed DOI
Brodska B, Kracmarova M, Holoubek A, Kuzelova K. Localization of AML-related nucleophosmin mutant depends on its subtype and is highly affected by its interaction with wild-type NPM. PLoS One. 2017;12:e0175175. doi: 10.1371/journal.pone.0175175. PubMed DOI PMC