Group I p21-activated kinases in leukemia cell adhesion to fibronectin
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33464167
PubMed Central
PMC7834095
DOI
10.1080/19336918.2021.1872760
Knihovny.cz E-zdroje
- Klíčová slova
- AML, ECIS, IRM, PAK, acute myeloid leukemia, cell adhesion,
- MeSH
- buněčná adheze MeSH
- buněčné linie MeSH
- fibronektiny genetika MeSH
- leukemie * genetika MeSH
- lidé MeSH
- p21 aktivované kinasy * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibronektiny MeSH
- p21 aktivované kinasy * MeSH
P21-activated kinases (PAK) regulate processes associated with cytoskeleton dynamics. PAK expression in leukemia cells was measured on protein and mRNA levels. In functional assays, we analyzed the effect of PAK inhibitors IPA-3 and FRAX597 on cell adhesivity and viability. PAK2 was dominant in cell lines, whereas primary cells also expressed comparable amount of PAK1 transcription isoforms: PAK1-full and PAK1Δ15. PAK1Δ15 and PAK2 levels correlated with surface density of integrins β1 and αVβ3. PAK1-full, but not PAK2, was present in membrane protrusions. IPA-3, which prevents PAK activation, induced cell contraction in semi-adherent HEL cells only. FRAX597, which inhibits PAK kinase activity, increased cell-surface contact area in all leukemia cells. Both inhibitors reduced the stability of cell attachment and induced cell death.
Zobrazit více v PubMed
Becker PS. Dependence of acute myeloid leukemia on adhesion within the bone marrow microenvironment. Scientific World J. 2012;2012:856467. PubMed PMC
Matsunaga T, Takemoto N, Sato T, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9:1158–1165. PubMed
Horton ER, Byron A, Askari JA, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol. 2015;17:1577–1587. PubMed PMC
Ye DZ, Field J. PAK signaling in cancer. Cell Logist. 2012;2:105–116. PubMed PMC
Pandolfi A, Stanley RF, Yu Y, et al. PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2015;126:1118–1127. PubMed PMC
Semenova G, Chernoff J. Targeting PAK1. Biochem Soc Trans. 2017;45:79–88. PubMed PMC
Maruta H, Ahn MR. From bench (laboratory) to bed (hospital/home): how to explore effective natural and synthetic PAK1-blockers/longevity-promoters for cancer therapy. Eur J Med Chem. 2017;142:229–243. PubMed
Zandvakili I, Lin Y, Morris JC. Rho GTPases: anti- or pro-neoplastic targets? Oncogene. 2017;36:3213–3222. PubMed PMC
Kumar R, Sanawar R, Li X, et al. Structure, biochemistry, and biology of PAK kinases. Gene. 2017;605:20–31. PubMed PMC
Rane CK, Minden A. P21 activated kinase signaling in cancer. Semin Cancer Biol. 2018;54:40–49. PubMed
Manser E, Huang HY, Loo TH, et al. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol. 1997;17:1129–1143. PubMed PMC
Frost JA, Khokhlatchev A, Stippec S, et al. Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J Biol Chem. 1998;273:28191–28198. PubMed
Nayal A, Webb DJ, Brown CM, et al. Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J Cell Biol. 2006;173:587–589. PubMed PMC
Mayhew MW, Jeffery ED, Sherman NE, et al. Identification of phosphorylation sites in betaPIX and PAK1. J Cell Sci. 2007;120:3911–3918. PubMed PMC
Peri S, Navarro JD, Amanchy R, et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 2003;13:2363–2371. PubMed PMC
Renkema GH, Pulkkinen K, Saksela K. Cdc42/Rac1-mediated activation primes PAK2 for superactivation by tyrosine phosphorylation. Mol Cell Biol. 2002;22:6719–6725. PubMed PMC
Roselova P, Obr A, Holoubek A, et al. Adhesion structures in leukemia cells and their regulation by Src family kinases. Cell Adh Migr. 2018;12:286–298. PubMed PMC
Kuželová K, Grebenová D, Holoubek A, et al. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells. PLoS ONE. 2014;9:e92560. PubMed PMC
Dorrance AM, De Vita S, Radu M, et al. The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment. Blood. 2013;121:2474–2482. PubMed PMC
Zeng Y, Broxmeyer HE, Staser K, et al. Pak2 regulates hematopoietic progenitor cell proliferation, survival and differentiation. Stem Cells. 2015;33:1630–1641. PubMed PMC
Edlinger L, Berger-Becvar A, Menzl I, et al. Expansion of BCR/ABL1 + cells requires PAK2 but not PAK1. Br J Haematol. 2017;179:229–241. PubMed PMC
Phee H, Au-Yeung B, Pryshchep O, et al. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation. eLife. 2014;3:e02270. PubMed PMC
Chatterjee A, Ghosh J, Ramdas B, et al. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. Cell Rep. 2014;9:1333–1348. PubMed PMC
Berger A, Hoelbl-Kovacic A, Bourgeais J, et al. PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis. Leukemia. 2014;28:629–641. PubMed PMC
Friedbichler K, Kerenyi MA, Kovacic B, et al. Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood. 2010;116:1548–1558. PubMed PMC
Rennefahrt UE, Deacon SW, Parker SA, et al. Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J Biol Chem. 2007;282:15667–15678. PubMed
Coniglio SJ, Zavarella S, Symons MH. Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol. 2008;28:4162–4172. PubMed PMC
Lee JH, Wittki S, Brau T, et al. HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell. 2013;49:668–679. PubMed
Grebenova D, Holoubek A, Roselova P, et al. PAK1, PAK1Delta15, and PAK2: similarities, differences and mutual interactions. Sci Rep. 2019;9:17171–17176. PubMed PMC
Tsuji-Takayama K, Kamiya T, Nakamura S, et al. Establishment of multiple leukemia cell lines with diverse myeloid and/or megakaryoblastoid characteristics from a single Ph1 positive chronic myelogenous leukemia blood sample. Hum Cell. 1994;7:167–171. PubMed
Kuzelova K, Grebenova D, Obr A, et al. Different roles for PAK1 and PAK2 in the interaction of leukemia cells with fibronectin. Febs J. 2017;284:354–355.
Kuželová K, Obr A, Marková J, et al. Integrin expression and adhesivity to fibronectin in primary acute myeloid leukemia cells: impact of NPM1 and FLT3 mutations. Eur J Haematol. 2020;105:578–587. PubMed
Kuzelova K, Pluskalova M, Brodska B, et al. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin. J Cell Biochem. 2010;109:184–195. PubMed
Deacon SW, Beeser A, Fukui JA, et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008;15:322–331. PubMed PMC
Licciulli S, Maksimoska J, Zhou C, et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem. 2013;288:29105–29114. PubMed PMC
Jarvinen M, Ylanne J, Vartio T, et al. Tumor promoter and fibronectin induce actin stress fibers and focal adhesion sites in spreading human erythroleukemia (HEL) cells. Eur J Cell Biol. 1987;44:238–246. PubMed
Ylanne J, Cheresh DA, Virtanen I. Localization of beta 1, beta 3, alpha 5, alpha v, and alpha IIb subunits of the integrin family in spreading human erythroleukemia cells. Blood. 1990;76:570–577. PubMed
Liu X, Si W, Liu X, et al. JMJD6 promotes melanoma carcinogenesis through regulation of the alternative splicing of PAK1, a key MAPK signaling component. Mol Cancer. 2017;16:175–2. PubMed PMC
Guarino M. Src signaling in cancer invasion. J Cell Physiol. 2010;223:14–26. PubMed
Sells MA, Knaus UG, Bagrodia S, et al. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol. 1997;7:202–210. PubMed
Parrini MC, Camonis J, Matsuda M, et al. Dissecting activation of the PAK1 kinase at protrusions in living cells. J Biol Chem. 2009;284:24133–24143. PubMed PMC
Chew TL, Masaracchia RA, Goeckeler ZM, et al. Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil. 1998;19:839–854. PubMed
Sanders LC, Matsumura F, Bokoch GM, et al. Inhibition of myosin light chain kinase by p21-activated kinase. Science. 1999;283:2083–2085. PubMed
Stockton RA, Schaefer E, Schwartz MA. P21-activated kinase regulates endothelial permeability through modulation of contractility. J Biol Chem. 2004;279:46621–46630. PubMed
Zeng Q, Lagunoff D, Masaracchia R, et al. Endothelial cell retraction is induced by PAK2 monophosphorylation of myosin II. J Cell Sci. 2000;113(Pt 3):471–482. PubMed
Gasparski AN, Wilson JT, Banerjee A, et al. The role of PAK1 in the maturation of invadopodia during transient mechanical stimulation. Front Cell Dev Biol. 2019;7:269. PubMed PMC
Mierke CT, Puder S, Aermes C, et al. Effect of PAK inhibition on cell mechanics depends on Rac1. Front Cell Dev Biol. 2020;8:13. PubMed PMC
Manser E, Loo TH, Koh CG, et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell. 1998;1:183–192. PubMed
Han D, Wang H, Cui W, Zhang B, Chen BZ. Computational insight into the mechanisms of action and selectivity of Afraxis PAK inhibitors. Future Med Chem. 2020;12(5):367–385 PubMed
Lee N, MacDonald H, Reinhard C, et al. Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci U S A. 1997;94:13642–13647. PubMed PMC
Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science. 1997;276:1571–1574. PubMed
Vilas GL, Corvi MM, Plummer GJ, et al. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc Natl Acad Sci U S A. 2006;103:6542–6547. PubMed PMC