Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24664099
PubMed Central
PMC3963893
DOI
10.1371/journal.pone.0092560
PII: PONE-D-13-39562
Knihovny.cz E-zdroje
- MeSH
- apoptóza účinky léků MeSH
- buněčná adheze účinky léků MeSH
- disulfidy metabolismus farmakologie MeSH
- faktory depolymerizující aktin chemie metabolismus MeSH
- fibronektiny metabolismus MeSH
- fosforylace účinky léků MeSH
- hematopoéza účinky léků MeSH
- inhibitory proteinkinas metabolismus farmakologie MeSH
- intracelulární prostor účinky léků metabolismus MeSH
- krevní buňky cytologie účinky léků MeSH
- leukemie patologie MeSH
- lidé MeSH
- lymfom patologie MeSH
- malá interferující RNA genetika MeSH
- naftoly metabolismus farmakologie MeSH
- p21 aktivované kinasy antagonisté a inhibitory nedostatek genetika MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese účinky léků MeSH
- serin metabolismus MeSH
- umlčování genů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- disulfidy MeSH
- faktory depolymerizující aktin MeSH
- fibronektiny MeSH
- inhibitory proteinkinas MeSH
- IPA-3 compound MeSH Prohlížeč
- malá interferující RNA MeSH
- naftoly MeSH
- p21 aktivované kinasy MeSH
- serin MeSH
P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport.
Zobrazit více v PubMed
Arias-Romero LE, Chernoff J (2008) A tale of two paks. Biol. Cell. 100: 97–108. PubMed
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES (2010) PAK1 as a therapeutic target. Expert Opin. Ther. Targets 14: 703–725. PubMed PMC
Coniglio SJ, Zavarella S, Symons MH (2008) Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol. Cell. Biol. 28: 4162–4172. PubMed PMC
Arai A, Jin A, Yan W, Mizuchi D, Yamamoto K, et al. (2005) SDF-1 synergistically enhances IL-3-induced activation of the raf-1/MEK/Erk signaling pathway through activation of rac and its effector pak kinases to promote hematopoiesis and chemotaxis. Cell. Signal. 17: 497–506. PubMed
Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R (2006) PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25: 2931–2936. PubMed
Parekh P, Rao KV (2007) Overexpression of cyclin D1 is associated with elevated levels of MAP kinases, akt and Pak1 during diethylnitrosamine-induced progressive liver carcinogenesis. Cell Biol. Int. 31: 35–43. PubMed
Kamai T, Shirataki H, Nakanishi K, Furuya N, Kambara T, et al. (2010) Increased Rac1 activity and Pak1 overexpression are associated with lymphovascular invasion and lymph node metastasis of upper urinary tract cancer. BMC Cancer 10: 164–2407–10–164. PubMed PMC
McCarty SK, Saji M, Zhang X, Jarjoura D, Fusco A, et al. (2010) Group I p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated in thyroid cancer invasion. Endocr. Relat. Cancer 17: 989–999. PubMed PMC
Lee MY, Kim SH, Ihm HJ, Chae HD, Kim CH, et al. (2011) Up-regulation of p21-activated kinase 1 by in vitro treatment with interleukin 1-beta and its increased expression in ovarian endometriotic cysts. Fertil. Steril. 96: 508–511. PubMed
Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, et al. (2011) Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc. Natl. Acad. Sci. U. S. A. 108: 7177–7182. PubMed PMC
Sato M, Matsuda Y, Wakai T, Kubota M, Osawa M, et al. (2013) P21-activated kinase-2 is a critical mediator of transforming growth factor-beta-induced hepatoma cell migration. J. Gastroenterol. Hepatol. PubMed
Ong CC, Jubb AM, Jakubiak D, Zhou W, Rudolph J, et al. (2013) P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. J. Natl. Cancer Inst. PubMed
Hoover WC, Zhang W, Xue Z, Gao H, Chernoff J, et al. (2012) Inhibition of p21 activated kinase (PAK) reduces airway responsiveness in vivo and in vitro in murine and human airways. PLoS One 7: e42601. PubMed PMC
Stockton RA, Schaefer E, Schwartz MA (2004) P21-activated kinase regulates endothelial permeability through modulation of contractility. J. Biol. Chem. 279: 46621–46630. PubMed
Walsh K, McKinney MS, Love C, Liu Q, Fan A, et al. (2013) PAK1 mediates resistance to PI3K inhibition in lymphomas. Clin. Cancer Res. 19: 1106–1115. PubMed PMC
Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, et al. (2008) An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem. Biol. 15: 322–331. PubMed PMC
Flaiz C, Chernoff J, Ammoun S, Peterson JR, Hanemann CO (2009) PAK kinase regulates rac GTPase and is a potential target in human schwannomas. Exp. Neurol. 218: 137–144. PubMed PMC
Viaud J, Peterson JR (2009) An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Mol. Cancer. Ther. 8: 2559–2565. PubMed PMC
Grebenova D, Roselova P, Pluskalova M, Halada P, Rosel D, et al. (2012) Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells. J. Proteomics. PubMed
Dorrance AM, De Vita S, Radu M, Reddy PN, McGuinness MK, et al. (2013) The rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment. Blood 121: 2474–2482. PubMed PMC
Tsuji-Takayama K, Kamiya T, Nakamura S, Matsuo Y, Adachi T, et al. (1994) Establishment of multiple leukemia cell lines with diverse myeloid and/or megakaryoblastoid characteristics from a single Ph1 positive chronic myelogenous leukemia blood sample. Hum. Cell 7: 167–171. PubMed
Martin P, Papayannopoulou T (1982) HEL cells: A new human erythroleukemia cell line with spontaneous and induced globin expression. Science 216: 1233–1235. PubMed
Kuzelova K, Grebenova D, Hrkal Z (2007) Labeling of apoptotic JURL-MK1 cells by fluorescent caspase-3 inhibitor FAM-DEVD-fmk occurs mainly at site(s) different from caspase-3 active site. Cytometry A. 71: 605–611. PubMed
Kuzelova K, Pluskalova M, Brodska B, Otevrelova P, Elknerova K, et al. (2010) Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin. J. Cell. Biochem. 109: 184–195. PubMed
Obr A, Roselova P, Grebenova D, Kuzelova K (2013) Real-time monitoring of hematopoietic cell interaction with fibronectin fragment: The effect of histone deacetylase inhibitors. Cell. Adh Migr. 7: 275–282. PubMed PMC
Persico A, Cervigni RI, Barretta ML, Corda D, Colanzi A (2010) Golgi partitioning controls mitotic entry through aurora-A kinase. Mol. Biol. Cell 21: 3708–3721. PubMed PMC
Barr VA, Bunnell SC (2009) Interference reflection microscopy. Curr. Protoc. Cell. Biol. Chapter 4: Unit 4.23. PubMed PMC
Singhal R, Kandel ES (2012) The response to PAK1 inhibitor IPA3 distinguishes between cancer cells with mutations in BRAF and ras oncogenes. Oncotarget 3: 700–708. PubMed PMC
Bright MD, Garner AP, Ridley AJ (2009) PAK1 and PAK2 have different roles in HGF-induced morphological responses. Cell. Signal. 21: 1738–1747. PubMed
Luo S, Rubinsztein DC (2009) Huntingtin promotes cell survival by preventing Pak2 cleavage. J. Cell. Sci. 122: 875–885. PubMed PMC
Siu MK, Wong ES, Chan HY, Kong DS, Woo NW, et al. (2010) Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: Effects on prognosis and cell invasion. Int. J. Cancer 127: 21–31. PubMed
Wu R, Abramson AL, Symons MH, Steinberg BM (2010) Pak1 and Pak2 are activated in recurrent respiratory papillomas, contributing to one pathway of Rac1-mediated COX-2 expression. Int. J. Cancer 127: 2230–2237. PubMed PMC
Marlin JW, Chang YW, Ober M, Handy A, Xu W, Jakobi R (2011) Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34. Mamm. Genome 22: 306–317. PubMed
Li T, Zhang J, Zhu F, Wen W, Zykova T, et al. (2011) P21-activated protein kinase (PAK2)-mediated c-jun phosphorylation at 5 threonine sites promotes cell transformation. Carcinogenesis 32: 659–666. PubMed PMC
Lee N, MacDonald H, Reinhard C, Halenbeck R, Roulston A, et al. (1997) Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc. Natl. Acad. Sci. U. S. A. 94: 13642–13647. PubMed PMC
Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276: 1571–1574. PubMed
Kuzelova K, Grebenova D, Brodska B (2011) Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes. J. Cell. Biochem. 112: 3334–3342. PubMed
Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y (2007) Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc. Natl. Acad. Sci. U. S. A. 104: 5091–5096. PubMed PMC
Tybulewicz VL, Henderson RB (2009) Rho family GTPases and their regulators in lymphocytes. Nat. Rev. Immunol. 9: 630–644. PubMed PMC
Mulloy JC, Cancelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y (2010) Rho GTPases in hematopoiesis and hemopathies. Blood 115: 936–947. PubMed PMC
Wang H, Zeng X, Fan Z, Lim B (2010) RhoH plays distinct roles in T-cell migrations induced by different doses of SDF1 alpha. Cell. Signal. 22: 1022–1032. PubMed
Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A (2001) Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J. Biol. Chem. 276: 1677–1680. PubMed
Wittmann T, Bokoch GM, Waterman-Storer CM (2004) Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J. Biol. Chem. 279: 6196–6203. PubMed
Kosoff R, Chow HY, Radu M, Chernoff J (2013) Pak2 kinase restrains mast cell FcepsilonRI receptor signaling through modulation of rho protein guanine nucleotide exchange factor (GEF) activity. J. Biol. Chem. 288: 974–983. PubMed PMC