Cytoplasmic localization of Mdm2 in cells expressing mutated NPM is mediated by p53

. 2023 Sep ; 290 (17) : 4281-4299. [epub] 20230511

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37119456

Specific C-terminal nucleophosmin (NPM) mutations are related to the acute myeloid leukaemia and cause mistargeting of mutated NPM (NPMmut) to the cytoplasm. Consequently, multiple NPM-interacting partners, e.g., the tumour suppressor p53, become also mislocalized. We found that ubiquitin ligase Mdm2 mislocalizes to the cytoplasm in the presence of NPMmut as well. Since p53 interacts with Mdm2, we searched for the NPMmut-p53-Mdm2 complex and interactions of its constituents in live cells and cell lysates using fluorescently tagged proteins, fluorescence lifetime imaging and immunoprecipitation. We proved existence of the ternary complex, which likely adopts a chain-like configuration. Interaction between Mdm2 and NPMmut was not detected, even under conditions of upregulated Mdm2 and p53 induced by Actinomycin D. We assume that p53 serves in the complex as a bridging link between Mdm2 and NPMmut. This conclusion was supported by disruption of the Mdm2-p53 interaction by Nutlin-3A, which resulted in relocalization of Mdm2 to the nucleus, while both NPMmut and p53 remained in the cytoplasm. Importantly, silencing of p53 also prevented mislocalization of Mdm2 in the presence of NPMmut.

Zobrazit více v PubMed

Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A et al. (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352, 254-266.

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M & Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391-2405.

Brodska B, Sasinkova M & Kuzelova K (2019) Nucleophosmin in leukemia: consequences of anchor loss. Int J Biochem Cell Biol 111, 52-62.

Bolli N, De Marco MF, Martelli MP, Bigerna B, Pucciarini A, Rossi R, Mannucci R, Manes N, Pettirossi V, Pileri SA et al. (2009) A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF. Leukemia 23, 501-509.

Holoubek A, Strachotova D, Otevrelova P, Roselova P, Herman P & Brodska B (2021) AML-related NPM mutations drive p53 delocalization into the cytoplasm with possible impact on p53-dependent stress response. Cancers (Basel) 13, 3266.

Brodska B, Holoubek A, Otevrelova P & Kuzelova K (2016) Low-dose actinomycin-D induces redistribution of wild-type and mutated nucleophosmin followed by cell death in leukemic cells. J Cell Biochem 117, 1319-1329.

Sasinkova M, Herman P, Holoubek A, Strachotova D, Otevrelova P, Grebenova D, Kuzelova K & Brodska B (2021) NSC348884 cytotoxicity is not mediated by inhibition of nucleophosmin oligomerization. Sci Rep 11, 1084.

Yu GW, Rudiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR & Fersht AR (2006) The central region of HDM2 provides a second binding site for p53. Proc Natl Acad Sci USA 103, 1227-1232.

Ma JH, Martin JD, Zhang H, Auger KR, Ho TF, Kirkpatrick RB, Grooms MH, Johanson KO, Tummino PJ, Copeland RA et al. (2006) A second p53 binding site in the central domain of mdm2 is essential for p53 ubiquitination. Biochemistry 45, 9238-9245.

Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D & Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5, 465-475.

Colombo E, Marine JC, Danovi D, Falini B & Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4, 529-533.

Li MY, Brooks CL, Wu-Baer F, Chen DL, Baer R & Gu W (2003) Mono-versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972-1975.

Brooks CL, Li MY & Gu W (2004) Monoubiquitination - the signal for p53 nuclear export? Cell Cycle 3, 436-438.

Henningsen KM, Manzini V, Magerhans A, Gerber S & Dobbelstein M (2022) MDM2-driven ubiquitination rapidly removes p53 from its cognate promoters. Biomolecules 12, 22.

Oliner JD, Pietenpol JA, Thiagalingam S, Gvuris J, Kinzler KW & Vogelstein B (1993) Oncoprotein Mdm2 conceals the activation domain of tumor suppressor-P53. Nature 362, 857-860.

Kubbutat MHG, Ludwig RL, Ashcroft M & Vousden KH (1998) Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol 18, 5690-5698.

Moll UM & Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1, 1001-1008.

Wallace M, Worrall E, Pettersson S, Hupp TR & Ball KL (2006) Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 23, 251-263.

Kalousek I, Brodska B, Otevrelova P & Roselova P (2007) Actinomycin D upregulates proapoptotic protein Puma and downregulates Bcl-2 mRNA in normal peripheral blood lymphocytes. AntiCancer Drugs 18, 763-772.

Levine AJ (2019) The many faces of p53: something for everyone. J Mol Cell Biol 11, 524-530.

Chen YH, Dey R & Chen L (2010) Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer. Structure 18, 246-256.

Oliner JD, Saiki AY & Caenepeel S (2016) The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb Perspect Med 6, a026336.

Buesoramos CE, Yang Y, Deleon E, Mccown P, Stass SA & Albitar M (1993) The human Mdm-2 oncogene is overexpressed in leukemias. Blood 82, 2617-2623.

Prokocimer M, Molchadsky A & Rotter V (2017) Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood 130, 699-712.

Colombo E, Martinelli P, Zamponi R, Shing DC, Bonetti P, Luzi L, Volorio S, Bernard L, Pruneri G, Alcalay M et al. (2006) Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res 66, 3044-3050.

Ando K, Tsushima H, Matsuo E, Horio K, Tominaga-Sato S, Imanishi D, Imaizumi Y, Iwanaga M, Itonaga H, Yoshida S et al. (2013) Mutations in the nucleolar phosphoprotein, nucleophosmin, promote the expression of the oncogenic transcription factor MEF/ELF4 in leukemia cells and potentiates transformation. J Biol Chem 288, 9457-9467.

Kurki S, Peltonen K & Laiho M (2004) Nucleophosmin, HDM2 and p53 - players in UV damage incited nucleolar stress response. Cell Cycle 3, 976-979.

Ianni A, Kumari P, Tarighi S, Simonet NG, Popescu D, Guenther S, Hölper S, Schmidt A, Smolka C, Yue S et al. (2021) SIRT7-dependent deacetylation of NPM promotes p53 stabilization following UV-induced genotoxic stress. Proc Natl Acad Sci USA 118, e2015339118.

Lee C, Smith BA, Bandyopadhyay K & Gjerset RA (2005) DNA damage disrupts the p14ARF-B23 (nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF. Cancer Res 65, 9834-9842.

Schuster K, Fan LY & Harris LC (2007) MDM2 splice variants predominantly localize to the nucleoplasm mediated by a COOH-terminal nuclear localization signal. Mol Cancer Res 5, 403-412.

Brodska B, Kracmarova M, Holoubek A & Kuzelova K (2017) Localization of AML-related nucleophosmin mutant depends on its subtype and is highly affected by its interaction with wild-type NPM. PLoS One 12, e0175175.

Lambert B & Buckle M (2006) Characterisation of the interface between nucleophosmin (NPM) and p53: potential role in p53 stabilisation. FEBS Lett 580, 345-350.

Pauker MH, Hassan N, Noy E, Reicher B & Barda-Saad M (2012) Studying the dynamics of SLP-76, Nck, and Vav1 multimolecular complex formation in live human cells with triple-color FRET. Sci Signal 5, rs3.

Fried S, Reicher B, Pauker MH, Eliyahu S, Matalon O, Noy E, Chill J & Barda-Saad M (2014) Triple-color FRET analysis reveals conformational changes in the WIP-WASp actin-regulating complex. Sci Signal 7, ra60.

Eckenstaler R & Benndorf RA (2021) A combined acceptor photobleaching and donor fluorescence lifetime imaging microscopy approach to analyze multi-protein interactions in living cells. Front Mol Biosci 8, 635548.

Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. 3rd edn. Springer, New York, NY.

Lee HH, Kim HS, Kang JY, Lee BI, Ha JY, Yoon HJ, Lim SO, Jung G & Suh SW (2007) Crystal structure of human nucleophosmin-core reveals plasticity of the pentamer-pentamer interface. Proteins 69, 672-678.

Holoubek A, Herman P, Sykora J, Brodska B, Humpolickova J, Kracmarova M, Gaskova D, Hof M & Kuzelova K (2018) Monitoring of nucleophosmin oligomerization in live cells. Methods Appl Fluoresc 6, 035016.

Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16, 277-278.

Roth J, Dobbelstein M, Freedman DA, Shenk T & Levine AJ (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 17, 554-564.

Falini B, Brunetti L & Martelli MP (2015) Dactinomycin in NPM1-mutated acute myeloid leukemia. N Engl J Med 373, 1180-1182.

Zucenka A, Vaitekenaite V, Maneikis K, Pileckyte R, Trociukas I, Peceliunas V & Griskevicius L (2021) Venetoclax, actinomycin D and low dose cytarabine for relapsed or refractory acute myeloid leukemia in clinical practice setting. Blood 138, 3422.

Tzaridis T, Milde T, Pajtler KW, Bender S, Jones DT, Muller S, Wittmann A, Schlotter M, Kulozik AE, Lichter P et al. (2016) Low-dose actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in RELA-positive ependymoma. Oncotarget 7, 61860-61873.

Sasinkova M, Holoubek A, Otevrelova P, Kuzelova K & Brodska B (2018) AML-associated mutation of nucleophosmin compromises its interaction with nucleolin. Int J Biochem Cell Biol 103, 65-73.

Bertwistle D, Sugimoto M & Sherr CJ (2004) Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24, 985-996.

Lee DH & Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8, 397-403.

Milner J & Medcalf EA (1991) Cotranslation of activated mutant P53 with wild-type drives the wild-type P53 protein into the mutant conformation. Cell 65, 765-774.

Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, Milner J & Orlova EV (2006) The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J 25, 5191-5200.

Rajagopalan S, Huang F & Fersht AR (2011) Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res 39, 2294-2303.

Ma L, Wagner J, Rice JJ, Hu W, Levine AJ & Stolovitzky GA (2005) A plausible model for the digital response of p53 to DNA damage. Proc Natl Acad Sci USA 102, 14266-14271.

Gaglia G, Guan Y, Shah JV & Lahav G (2013) Activation and control of p53 tetramerization in individual living cells. Proc Natl Acad Sci U S A 110, 15497-15501.

Lomax ME, Barnes DM, Hupp TR, Picksley SM & Camplejohn RS (1998) Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene 17, 643-649.

Marston NJ, Jenkins JR & Vousden KH (1995) Oligomerization of full-length P53 contributes to the interaction with Mdm2 but not Hpv E6. Oncogene 10, 1709-1715.

Katz C, Low-Calle AM, Choe JH, Laptenko O, Tong D, Joseph-Chowdhury JSN, Garofalo F, Zhu Y, Friedler A & Prives C (2018) Wild-type and cancer-related p53 proteins are preferentially degraded by MDM2 as dimers rather than tetramers. Gene Dev 32, 430-447.

Ziemer MA, Mason A & Carlson DM (1982) Cell-free translations of proline-rich protein mRNAs. J Biol Chem 257, 11176-11180.

Rizzo MA, Springer GH, Granada B & Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22, 445-449.

Davidson M & Piston D. Addgene plasmid # 54604; http://n2t.net/addgene:54604; RRID:Addgene_54604

Koushik SV, Chen H, Thaler C, Puhl HL 3rd & Vogel SS (2006) Cerulean, Venus, and VenusY67C FRET reference standards. Biophys J 91, L99-L101.

Vogel S. Addgene plasmid # 27793; http://n2t.net/addgene:27793; RRID:Addgene_27793

Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB & Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36, 147-150.

Alon U & Lahav G. Addgene plasmid # 53962; http://n2t.net/addgene:53962; RRID:Addgene_53962

Davidson M & Piston D. Addgene plasmid # 54742; http://n2t.net/addgene:54742; RRID:Addgene_54742

Herman P, Holoubek A & Brodska B (2019) Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochim Biophys Acta Gen Subj 1863, 266-277.

Davison AC & Hinkley DV (1997) Bootstrap Methods and Their Application. Cambridge University Press, Cambridge.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...