Optimization of seismic performance in waste fibre reinforced concrete by TOPSIS method

. 2023 May 21 ; 13 (1) : 8204. [epub] 20230521

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37211550

Grantová podpora
31140/1312/3105 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague, project "Development and characterization of polymer composite materials with natural filler" (31140/1312/3105).

Odkazy

PubMed 37211550
PubMed Central PMC10200795
DOI 10.1038/s41598-023-35495-9
PII: 10.1038/s41598-023-35495-9
Knihovny.cz E-zdroje

For a sustainable environment and to tackle the pollution problem, industrial wastes can be used in concrete composite materials. This is especially beneficial in places prone to earth quack and lower temperature. In this study, five different types of waste fibres such as polyester waste, rubber waste, rock wool waste, glass fibre waste and coconut fibre waste were used as an additive in 0.5% 1%, and 1.5% by mass in concrete mix. Seismic performance related properties of the samples were examined through evaluation of compressive strength, flexural strength, impact strength, split tensile strength, and thermal conductivity. Results showed that, impact strength of the concrete significantly improved by the addition of fibre reinforcement in concrete. Split tensile strength and flexural strength were significantly reduced. Thermal conductivity was also influenced by addition of polymeric fibrous waste. Microscopic analysis was performed to examine the fractured surfaces. In order to get the optimum mix ratio, multi response optimization technique was used to determine the desired level of impact strength at an acceptable level of other properties. Rubber waste was found to be the most attractive option followed by coconut fibre waste for the seismic application of concrete. The significance and percentage contribution of each factor was obtained by Analysis of variance ANOVA (α = 0.05) and pie chart which showed that Factor A (waste fibre type) is the main contributor. Confirmatory test was done on optimized waste material and their percentage. The order preference similarity to ideal solution (TOPSIS) technique was used for developed samples to obtain solution (sample) which is closest to ideal as per given weightage and preference for the decision making. The confirmatory test gives satisfactory results with error of 6.68%. Cost of reference sample and waste rubber reinforced concrete sample was estimated, which showed that 8% higher volume was achieved with waste fibre reinforced concrete at approximately same cost as pure concrete. Concrete reinforced with recycled fibre content is potentially beneficial in terms of minimizing resource depletion and waste. The addition of polymeric fibre waste in concrete composite not only improves seismic performance related properties but also reduces the environmental pollution from waste material which has no other end use.

Erratum v

PubMed

Zobrazit více v PubMed

Meng Q, Wu C, Su Y, Li J, Liu J, Pang J. A study of steel wire mesh reinforced high performance geopolymer concrete slabs under blast loading. J. Clean Prod. 2019;210:1150–1163. doi: 10.1016/j.jclepro.2018.11.083. DOI

Petek GA, Masanet E, Horvath A, Stadel A. Life-cycle inventory analysis of concrete production: A critical review. Cement Conc. Compos. 2014;51:38–48. doi: 10.1016/j.cemconcomp.2014.03.005. DOI

Dong Y. Performance assessment and design of ultra-high performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts. Const. Build. Mater. 2018;167:414–425. doi: 10.1016/j.conbuildmat.2018.02.037. DOI

Son KS, Hajirasouliha I, Pilakoutas K. Strength and deformability of waste tyre rubber-filled reinforced concrete columns. Const. Build. Mater. 2011;25(1):218–226. doi: 10.1016/j.conbuildmat.2010.06.035. DOI

Sadrolodabaee P, Claramunt J, Ardanuy M, Fuente A. A textile waste fibre-reinforced cement composite: Comparison between short random fibre and textile reinforcement. Materials (Basel) 2021;14(13):3742. doi: 10.3390/ma14133742. PubMed DOI PMC

Menon S, Naranje VG. Experimental investigation of recycling of rock-wool insulation as insulator in concrete blocks. Int. J. Eng. Appl. Sci. 2017;4(4):71–74.

Ioannis NL. The ultimate anti-seismic system. Open J. Civil Eng. 2015;5(3):322–327. doi: 10.4236/ojce.2015.53032. DOI

Ajmera D, Doshi D, Prabhu N, Agrawal H. Earthquake resistant buildings and design. Int. Res. J. Eng. Technol. 2021;7:7–9.

Ceroni F, Pecce M, Sica S, Garofano A. Assessment of seismic vulnerability of a historical masonry building. Buildings. 2012;2(3):332–358. doi: 10.3390/buildings2030332. DOI

Yin S, Li Y, Li S, Yang Y. Seismic performance of RC columns strengthened with textile-reinforced concrete in chloride environment. J. Compos. Constr. 2020;24(1):1–9. doi: 10.1061/(ASCE)CC.1943-5614.0000992. DOI

Kern E, Schorn H. Steel fibre reinforced concrete. Beton- und Stahlbetonbau. 1991;86(9):205–208. doi: 10.1002/best.199100380. DOI

Sun Y, Wu X, Xiong G. Seismic behaviour of rc columns strengthened with steel bar/wire mesh mortar. Key Eng. Mater. 2013;539(1):108–114. doi: 10.4028/www.scientific.net/KEM.539.108. DOI

Parra-Montesinos G. High-performance fibre-reinforced cement composites: An alternative for seismic design of structures. ACI Struct. J. 2005;102:668–675. doi: 10.14359/14662. DOI

Fagone PM, Kloft H, Loccarini F, Ranocchiai G. Jute fabric as a reinforcement for rammed earth structures. Compos. B. 2019;15:107064. doi: 10.1016/jcompositesb2019107064. DOI

Yooprasertchai E, Wiwatrojanagul P, Pimanmas A. A use of natural sisal and jute fibre composites for seismic retrofitting of nonductile rectangular reinforced concrete columns. J. Build. Eng. 2022;52:104521. doi: 10.1016/jjobe2022104521. DOI

Son KS, Hajirasouliha I, Pilakoutas K. Strength and deformability of waste tyre rubber-filled reinforced concrete columns. Constr. Build. Mater. 2011;25(1):218–226. doi: 10.1016/j.conbuildmat.2010.06.035. DOI

Khern YC, Paul SC, Kong SY, Babafemi AJ, Anggraini V, Miah MJ, Šavija B. Impact of chemically treated waste rubber tire aggregates on mechanical, durability and thermal properties of concrete. Front. Mater. 2020;7(90):1–11. doi: 10.3389/fmats.2020.00090. DOI

Xie J, Zheng Y, Guo Y, Ou R, Xie Z, Huang L. Effects of crumb rubber aggregate on the static and fatigue performance of reinforced concrete slabs. Compos. Struct. 2019;228:111371. doi: 10.1016/j.compstruct.2019.111371. DOI

Yang T, Saati F, Horoshenkov K, Xiong X, Yang K, Mishra R, Marburg S. Study on sound absorption behavior of multi-component polyester nonwovens: Experimental and numerical methods. Text. Res. J. 2019;89(6):3342–3361. doi: 10.1177/0040517518811940). DOI

Chandramouli K, Rao P, Narayanan P, Sekhartirumala S, Sravana P. Strength properties of glass fibre concrete. ARPN J. Eng. Appl. Sci. 2010;5(4):1–6.

Mishra R, Wiener J, Petru M, Novotna J. Bio-composites reinforced with natural fibers: Comparative analysis of thermal, static and dynamic-mechanical properties. Fiber Polym. 2020;21(3):619–627. doi: 10.1007/s12221-020-9804-0. DOI

Agbim CC. Concrete reinforced with glass fibres. Mag. Concr. Res. 2015;16(49):195–202. doi: 10.1680/macr.1964.16.49.195. DOI

Bobde S, Gandhe G, Tupe D. Performance of glass fibre reinforced concrete. Int. J. Adv. Res. Innov. Technol. 2018;4(3):984–988.

Yang T, Xiong X, Mishra R, Novak J. Acoustic evaluation of Struto nonwovens and their relationship with thermal properties. Text. Res. J. 2018;88(4):426–437. doi: 10.1177/0040517516681958. DOI

Cheng A, Lin WT, Huang R. Application of rock wool waste in cement-based composites. Mater. Des. 2011;32(2):636–642. doi: 10.1016/j.matdes.2010.08.014. DOI

Ali M. Seismic performance of coconut-fibre-reinforced-concrete columns with different reinforcement configurations of coconut-fibre ropes. Constr. Build. Mater. 2014;70:226–230. doi: 10.1016/j.conbuildmat.2014.07.086. DOI

Ranjitham M, Mohanraj S, Ajithpandi K, Akileswaran S, Sree S. Strength properties of coconut fibre reinforced concrete. AIP Conf. Proc. 2019;2128:020005. doi: 10.1063/1.5117917. DOI

Nadgouda, K. Coconut fibre reinforced concrete. Proc. Thirteenth IRF Int. Conf., 14th September 2014, Chennai, India, ISBN: 978-93-84209-51-3, (2014).

Hasan N, Sobuz H, Sayed M, Islam M. The use of coconut fibre in the production of structural lightweight concrete. J. Appl. Sci. 2012;12(9):831–839. doi: 10.3923/jas.2012.831.839. DOI

Mishra R, Behera BK. Novelties of 3-D woven composites and nanocomposites. J. Text. Inst. 2014;105(1):84–92. doi: 10.1080/00405000.2013.812266. DOI

Foti D. Preliminary analysis of concrete reinforced with waste bottles PET fibres. Constr. Build. Mater. 2011;25(4):1906–1915. doi: 10.1016/j.conbuildmat.2010.11.066. DOI

Ali M, Opulencia M, Chandra T, Chandra S, Muda I, Dias R, Chetthamrongchai P, Jalil AT. An environmentally friendly solution for waste facial masks recycled in construction materials. Sustainability. 2022;14(14):8739. doi: 10.3390/su14148739. DOI

Khajuria A, Sharma P. Use of plastic aggregates in concrete. Int. J. Innov. Technol. Explor. Eng. 2019;9(1):4406–4412. doi: 10.35940/ijitee.A5088.119119. DOI

Yu R, Onna D, Spiesz P, Yu QL, Brouwers H. Development of Ultra-Lightweight Fibre Reinforced Concrete applying expanded waste glass. J. Clean. Prod. 2016;12:690–701. doi: 10.1016/j.jclepro.2015.07.082. DOI

Dvorkin L, Dvorkin O, Zhitkovsky V, Ribakov Y. A method for optimal design of steel fibre reinforced concrete composition. Mater. Des. 2011;32(6):3254–3262. doi: 10.1016/j.matdes.2011.02.036. DOI

Aldahdooh M, Muhamad Bunnori N, Megat Johari MA. Evaluation of ultra-high-performance-fibre reinforced concrete binder content using the response surface method. Mater. Des. 2013;52:957–965. doi: 10.1016/j.matdes.2013.06.034. DOI

Şimşek B, Uygunoǧlu T. Multi-response optimization of polymer blended concrete: A TOPSIS based Taguchi application. Constr. Build. Mater. 2016;117:251–262. doi: 10.1016/j.conbuildmat.2016.05.027. DOI

Saaty RW. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987;9(3–5):161–176. doi: 10.1016/0270-0255(87)90473-8. DOI

Forman EH, Gass SI. The analytic hierarchy process—An exposition. Oper. Res. 2001;49(4):469–486. doi: 10.1287/opre.49.4.469.11231. DOI

Kett I. Engineered Concrete: Mix Design and Test Methods. Taylor & Francis; 2009.

ASTM C78/C78M-22. Standard Test Method for Flexural Strength of Concrete ( Using Simple Beam with Third-Point Loading), (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428–2959, USA, 2022)

Li HH, Xu Y, Chen P, Ge J, Fan W. Impact energy consumption of high- volume rubber concrete with silica fume. Adv. Civil Eng. 2019;2019:1728762. doi: 10.1155/2019/1728762. DOI

Li H, Xu Y, Chen P, Ge J, Wu F. Impact energy consumption of high-volume rubber concrete with silica fume. Adv. Civil. Eng. 2019;2019:1728762. doi: 10.1155/2019/1728762. DOI

Mastali M, Dalvand A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos. B. 2016;92:360–376. doi: 10.1016/j.compositesb.2016.01.046. DOI

Murali G, Abid SR, Amran M, Vatin NI, Fediuk R. Drop weight impact test on prepacked aggregate fibrous concrete—An experimental study. Materials (Basel) 2022;15(9):3096. doi: 10.3390/ma15093096. PubMed DOI PMC

Fokaides PA, Kalogirou SA. Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes. Appl. Energy. 2011;88:4358–4365. doi: 10.1016/j.apenergy.2011.05.014. DOI

Wasmi T, Salih M, Jawad L. Evaluating the thermal insulation performance of composite panels made of natural Luffa fibres and urea formaldehyde resin for buildings in the hot arid region. Adv. Build. Energ. Res. 2022;16(5):696–710. doi: 10.1080/17512549.2022.2098534. DOI

Nguyen HP, Pham VD, Ngo NV. Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid. Int. J. Adv. Manuf. Technol. 2018;98:1179–1198. doi: 10.1007/s00170-018-2321-2. DOI

Forman EH, Gass SI. The analytic hierarchy process—An exposition. Operations Res. 2001;49(4):469–486. doi: 10.1287/opre.49.4.469.11231. DOI

Behera BK, Mishra R. Artificial neural network-based prediction of aesthetic and functional properties of worsted suiting fabrics. Int. J. Cloth. Sci. Tech. 2007;19(5):259–276. doi: 10.1108/09556220710819483. DOI

Xie C, Cao M, Khan M, Yin H, Guan J. Review on different testing methods and factors affecting fracture properties of fibre reinforced cementitious composites. Constr. Build. Mater. 2021;273:121766. doi: 10.1016/jconbuildmat2020121766. DOI

Mishra R, Gupta N, Pachauri R, Behera BK. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. B. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI

Li Q, Zhao X, Xu S, Leung CK, Wang B. Multiple impact resistance of hybrid fibre ultrahigh toughness cementitious composites with different degrees of initial damage. J. Mater. Civil Eng. 2019 doi: 10.1061/(ASCE)MT.1943-5533.0002576. DOI

Gerges N, Issa C, Fawaz S. Rubber concrete: Mechanical and dynamical properties. Case studies. Constr. Mater. 2018;9:e00184. doi: 10.1016/j.cscm.2018.e00184. DOI

Yap Z, Khalid N, Haron Z, Khu W, Yeak S, Amran M. Rock wool-reinforced concrete: Physico-mechanical properties and predictive modelling. J. Build. Eng. 2022;59:105128. doi: 10.1016/j.jobe.2022.105128. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...