High PD-L1 Expression Predicts for Worse Outcome of Leukemia Patients with Concomitant NPM1 and FLT3 Mutations
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
grant No 16-30268A and project for conceptual development of the research organization No 00023736.
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
31185600
PubMed Central
PMC6600137
DOI
10.3390/ijms20112823
PII: ijms20112823
Knihovny.cz E-zdroje
- Klíčová slova
- AML, CD34, FLT3-ITD, NPM1, PD-1, PD-L1 transcript, leukemia,
- MeSH
- akutní myeloidní leukemie krev genetika MeSH
- antigeny CD274 krev genetika metabolismus MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- mutace MeSH
- nádorové biomarkery krev genetika metabolismus MeSH
- nukleofosmin MeSH
- tyrosinkinasa 3 podobná fms genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD274 MeSH
- CD274 protein, human MeSH Prohlížeč
- FLT3 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- messenger RNA MeSH
- nádorové biomarkery MeSH
- NPM1 protein, human MeSH Prohlížeč
- nukleofosmin MeSH
- tyrosinkinasa 3 podobná fms MeSH
Compared to solid tumors, the role of PD-L1 in hematological malignancies is less explored, and the knowledge in this area is mostly limited to lymphomas. However, several studies indicated that PD-L1 is also overexpressed in myeloid malignancies. Successful treatment of the acute myeloid leukemia (AML) is likely associated with elimination of the residual disease by the immune system, and possible involvement of PD-L1 in this process remains to be elucidated. We analyzed PD-L1 expression on AML primary cells by flow cytometry and, in parallel, transcript levels were determined for the transcription variants v1 and v2. The ratio of v1/v2 cDNA correlated with the surface protein amount, and high v1/v2 levels were associated with worse overall survival (p = 0.0045). The prognostic impact of PD-L1 was limited to AML with mutated nucleophosmin and concomitant internal tandem duplications in the FLT3 gene (p less than 0.0001 for this particular AML subgroup).
Zobrazit více v PubMed
Carey C.D., Gusenleitner D., Lipschitz M., Roemer M.G.M., Stack E.C., Gjini E., Hu X., Redd R., Freeman G.J., Neuberg D., et al. Topological Analysis Reveals a PD-L1-Associated Microenvironmental Niche for Reed-Sternberg Cells in Hodgkin Lymphoma. Blood. 2017;130:2420–2430. doi: 10.1182/blood-2017-03-770719. PubMed DOI PMC
Roemer M.G., Advani R.H., Ligon A.H., Natkunam Y., Redd R.A., Homer H., Connelly C.F., Sun H.H., Daadi S.E., Freeman G.J., et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J. Clin. Oncol. 2016;34:2690–2697. doi: 10.1200/JCO.2016.66.4482. PubMed DOI PMC
Brockelmann P.J., Engert A. Checkpoint Inhibition in Hodgkin Lymphoma - a Review. Oncol. Res. Treat. 2017;40:654–660. doi: 10.1159/000481800. PubMed DOI
Andorsky D.J., Yamada R.E., Said J., Pinkus G.S., Betting D.J., Timmerman J.M. Programmed Death Ligand 1 is Expressed by Non-Hodgkin Lymphomas and Inhibits the Activity of Tumor-Associated T Cells. Clin. Cancer Res. 2011;17:4232–4244. doi: 10.1158/1078-0432.CCR-10-2660. PubMed DOI
Li Y., Wang J., Li C., Ke X.Y. Contribution of PD-L1 to Oncogenesis of Lymphoma and its RNAi-Based Targeting Therapy. Leuk. Lymphoma. 2012;53:2015–2023. doi: 10.3109/10428194.2012.673228. PubMed DOI
Yousef S., Marvin J., Steinbach M., Langemo A., Kovacsovics T., Binder M., Kroger N., Luetkens T., Atanackovic D. Immunomodulatory Molecule PD-L1 is Expressed on Malignant Plasma Cells and Myeloma-Propagating Pre-Plasma Cells in the Bone Marrow of Multiple Myeloma Patients. Blood Cancer. J. 2015;5:e285. doi: 10.1038/bcj.2015.7. PubMed DOI PMC
Tamura H., Ishibashi M., Yamashita T., Tanosaki S., Okuyama N., Kondo A., Hyodo H., Shinya E., Takahashi H., Dong H., et al. Marrow Stromal Cells Induce B7-H1 Expression on Myeloma Cells, Generating Aggressive Characteristics in Multiple Myeloma. Leukemia. 2013;27:464–472. doi: 10.1038/leu.2012.213. PubMed DOI
Oliva S., Troia R., D’Agostino M., Boccadoro M., Gay F. Promises and Pitfalls in the use of PD-1/PD-L1 Inhibitors in Multiple Myeloma. Front. Immunol. 2018;9:2749. doi: 10.3389/fimmu.2018.02749. PubMed DOI PMC
Grzywnowicz M., Karczmarczyk A., Skorka K., Zajac M., Zaleska J., Chocholska S., Tomczak W., Giannopoulos K. Expression of Programmed Death 1 Ligand in Different Compartments of Chronic Lymphocytic Leukemia. Acta Haematol. 2015;134:255–262. doi: 10.1159/000430980. PubMed DOI
Lewinsky H., Barak A.F., Huber V., Kramer M.P., Radomir L., Sever L., Orr I., Mirkin V., Dezorella N., Shapiro M., et al. CD84 Regulates PD-1/PD-L1 Expression and Function in Chronic Lymphocytic Leukemia. J. Clin. Invest. 2018;128:5465–5478. doi: 10.1172/JCI96610. PubMed DOI PMC
Yang H., Bueso-Ramos C., DiNardo C., Estecio M.R., Davanlou M., Geng Q.R., Fang Z., Nguyen M., Pierce S., Wei Y., et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in Myelodysplastic Syndromes is Enhanced by Treatment with Hypomethylating Agents. Leukemia. 2014;28:1280–1288. doi: 10.1038/leu.2013.355. PubMed DOI PMC
Wolff F., Leisch M., Greil R., Risch A., Pleyer L. The Double-Edged Sword of (Re)Expression of Genes by Hypomethylating Agents: From Viral Mimicry to Exploitation as Priming Agents for Targeted Immune Checkpoint Modulation. Cell. Commun. Signal. 2017;15:13. doi: 10.1186/s12964-017-0168-z. PubMed DOI PMC
Daver N., Garcia-Manero G., Basu S., Boddu P.C., Alfayez M., Cortes J.E., Konopleva M., Ravandi-Kashani F., Jabbour E., Kadia T., et al. Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer. Discov. 2019;9:370–383. doi: 10.1158/2159-8290.CD-18-0774. PubMed DOI PMC
Assi R., Kantarjian H., Ravandi F., Daver N. Immune Therapies in Acute Myeloid Leukemia: A Focus on Monoclonal Antibodies and Immune Checkpoint Inhibitors. Curr. Opin. Hematol. 2018;25:136–145. doi: 10.1097/MOH.0000000000000401. PubMed DOI
Berthon C., Driss V., Liu J., Kuranda K., Leleu X., Jouy N., Hetuin D., Quesnel B. In Acute Myeloid Leukemia, B7-H1 (PD-L1) Protection of Blasts from Cytotoxic T Cells is Induced by TLR Ligands and Interferon-Gamma and can be Reversed using MEK Inhibitors. Cancer Immunol. Immunother. 2010;59:1839–1849. doi: 10.1007/s00262-010-0909-y. PubMed DOI PMC
Greiner J., Hofmann S., Schmitt M., Gotz M., Wiesneth M., Schrezenmeier H., Bunjes D., Dohner H., Bullinger L. Acute Myeloid Leukemia with Mutated Nucleophosmin 1: An Immunogenic Acute Myeloid Leukemia Subtype and Potential Candidate for Immune Checkpoint Inhibition. Haematologica. 2017;102:e499–e501. doi: 10.3324/haematol.2017.176461. PubMed DOI PMC
Cassady K., Martin P.J., Zeng D. Regulation of GVHD and GVL Activity Via PD-L1 Interaction with PD-1 and CD80. Front. Immunol. 2018;9:3061. doi: 10.3389/fimmu.2018.03061. PubMed DOI PMC
Saha A., Aoyama K., Taylor P.A., Koehn B.H., Veenstra R.G., Panoskaltsis-Mortari A., Munn D.H., Murphy W.J., Azuma M., Yagita H., et al. Host Programmed Death Ligand 1 is Dominant Over Programmed Death Ligand 2 Expression in Regulating Graft-Versus-Host Disease Lethality. Blood. 2013;122:3062–3073. doi: 10.1182/blood-2013-05-500801. PubMed DOI PMC
Brody R., Zhang Y., Ballas M., Siddiqui M.K., Gupta P., Barker C., Midha A., Walker J. PD-L1 Expression in Advanced NSCLC: Insights into Risk Stratification and Treatment Selection from a Systematic Literature Review. Lung Cancer. 2017;112:200–215. doi: 10.1016/j.lungcan.2017.08.005. PubMed DOI
Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csoszi T., Fulop A., Gottfried M., Peled N., Tafreshi A., Cuffe S., et al. Pembrolizumab Versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016;375:1823–1833. doi: 10.1056/NEJMoa1606774. PubMed DOI
Lee K.S., Kim B.H., Oh H.K., Kim D.W., Kang S.B., Kim H., Shin E. Programmed Cell Death Ligand-1 Protein Expression and CD274/PD-L1 Gene Amplification in Colorectal Cancer: Implications for Prognosis. Cancer. Sci. 2018;109:2957–2969. doi: 10.1111/cas.13716. PubMed DOI PMC
Bruggemann C., Kirchberger M.C., Goldinger S.M., Weide B., Konrad A., Erdmann M., Schadendorf D., Croner R.S., Krahenbuhl L., Kahler K.C., et al. Predictive Value of PD-L1 Based on mRNA Level in the Treatment of Stage IV Melanoma with Ipilimumab. J. Cancer Res. Clin. Oncol. 2017;143:1977–1984. doi: 10.1007/s00432-017-2450-2. PubMed DOI
Sasaki H., Suzuki A., Shitara M., Hikosaka Y., Okuda K., Moriyama S., Yano M., Fujii Y. PD-L1 Gene Expression in Japanese Lung Cancer Patients. Biomed. Rep. 2013;1:93–96. doi: 10.3892/br.2012.10. PubMed DOI PMC
Shen J.K., Cote G.M., Choy E., Yang P., Harmon D., Schwab J., Nielsen G.P., Chebib I., Ferrone S., Wang X., et al. Programmed Cell Death Ligand 1 Expression in Osteosarcoma. Cancer. Immunol. Res. 2014;2:690–698. doi: 10.1158/2326-6066.CIR-13-0224. PubMed DOI PMC
Hassan S.S., Akram M., King E.C., Dockrell H.M., Cliff J.M. PD-1, PD-L1 and PD-L2 Gene Expression on T-Cells and Natural Killer Cells Declines in Conjunction with a Reduction in PD-1 Protein during the Intensive Phase of Tuberculosis Treatment. PLoS ONE. 2015;10:e0137646. doi: 10.1371/journal.pone.0137646. PubMed DOI PMC
Ikeda S., Okamoto T., Okano S., Umemoto Y., Tagawa T., Morodomi Y., Kohno M., Shimamatsu S., Kitahara H., Suzuki Y., et al. PD-L1 is Upregulated by Simultaneous Amplification of the PD-L1 and JAK2 Genes in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2016;11:62–71. doi: 10.1016/j.jtho.2015.09.010. PubMed DOI
Vassilakopoulou M., Avgeris M., Velcheti V., Kotoula V., Rampias T., Chatzopoulos K., Perisanidis C., Kontos C.K., Giotakis A.I., Scorilas A., et al. Evaluation of PD-L1 Expression and Associated Tumor-Infiltrating Lymphocytes in Laryngeal Squamous Cell Carcinoma. Clin. Cancer Res. 2016;22:704–713. doi: 10.1158/1078-0432.CCR-15-1543. PubMed DOI
Koirala P., Roth M.E., Gill J., Piperdi S., Chinai J.M., Geller D.S., Hoang B.H., Park A., Fremed M.A., Zang X., et al. Immune Infiltration and PD-L1 Expression in the Tumor Microenvironment are Prognostic in Osteosarcoma. Sci. Rep. 2016;6:30093. doi: 10.1038/srep30093. PubMed DOI PMC
Kosemehmetoglu K., Ozogul E., Babaoglu B., Tezel G.G., Gedikoglu G. Programmed Death Ligand 1 (PD-L1) Expression in Malignant Mesenchymal Tumors. Turk. Patoloji Derg. 2017;1:192–197. doi: 10.5146/tjpath.2017.01395. PubMed DOI
Weber M., Wehrhan F., Baran C., Agaimy A., Buttner-Herold M., Preidl R., Neukam F.W., Ries J. PD-L1 Expression in Tumor Tissue and Peripheral Blood of Patients with Oral Squamous Cell Carcinoma. Oncotarget. 2017;8:112584–112597. doi: 10.18632/oncotarget.22576. PubMed DOI PMC
Gasser M., Koenigshausen M., Grimm M., Stein C., Grimmig T., Wagner M., Eung M., Rehder R., Nichiporuk Stumpf E., Moench R., et al. Clinical Significance and Therapeutic Potential of the Programmed Death Ligand-1 (PD-L1) and PD-L2 Expression in Human Colorectal Cancer. Cancer Sci. Ther. 2017;9:566–573. doi: 10.4172/1948-5956.1000475. DOI
Isobe K., Kakimoto A., Mikami T., Kaburaki K., Kobayashi H., Yoshizawa T., Nakano Y., Makino T., Otsuka H., Sano G., et al. PD-L1 mRNA Expression in EGFR-Mutant Lung Adenocarcinoma. Oncol. Rep. 2018;40:331–338. doi: 10.3892/or.2018.6442. PubMed DOI
Amatatsu M., Arigami T., Uenosono Y., Yanagita S., Uchikado Y., Kijima Y., Kurahara H., Kita Y., Mori S., Sasaki K., et al. Programmed Death-Ligand 1 is a Promising Blood Marker for Predicting Tumor Progression and Prognosis in Patients with Gastric Cancer. Cancer. Sci. 2018;109:814–820. doi: 10.1111/cas.13508. PubMed DOI PMC
Tsimafeyeu I., Imyanitov E.N., Zavalishina L., Raskin G., Povilaitite P., Savelov N., Kharitonova E., Rumyantsev A., Pugach I., Andreeva Y., et al. Final Results of the Concordance Analysis of PD-L1 Immunohistochemistry (IHC) Assays and Polymerase Chain Reaction (PCR) in Non-Small Lung Cancer. Ann. Oncol. 2018;29:viii493. doi: 10.1093/annonc/mdy292.028. DOI
Pawelczyk K., Piotrowska A., Ciesielska U., Jablonska K., Gletzel-Plucinska N., Grzegrzolka J., Podhorska-Okolow M., Dziegiel P., Nowinska K. Role of PD-L1 Expression in Non-Small Cell Lung Cancer and their Prognostic Significance According to Clinicopathological Factors and Diagnostic Markers. Int. J. Mol. Sci. 2019;20:824. doi: 10.3390/ijms20040824. PubMed DOI PMC
Yang K., Xu J., Liu Q., Li J., Xi Y. Expression and Significance of CD47, PD1 and PDL1 in T-Cell Acute Lymphoblastic lymphoma/leukemia. Pathol. Res. Pract. 2019;215:265–271. doi: 10.1016/j.prp.2018.10.021. PubMed DOI
Brodska B., Otevrelova P., Kuzelova K. Correlation of PD-L1 Surface Expression on Leukemia Cells with the Ratio of PD-L1 mRNA Variants and with Electrophoretic Mobility. Cancer. Immunol. Res. 2016;4:815–819. doi: 10.1158/2326-6066.CIR-16-0063. PubMed DOI
Budczies J., Klauschen F., Sinn B.V., Gyorffy B., Schmitt W.D., Darb-Esfahani S., Denkert C. Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization. PLoS ONE. 2012;7:e51862. doi: 10.1371/journal.pone.0051862. PubMed DOI PMC
Brodská B., Šašinková M., Kuželová K. Nucleophosmin in Leukemia: Consequences of Anchor Loss. Int. J. Biochem. Cell Biol. 2019;111:52–62. doi: 10.1016/j.biocel.2019.04.007. PubMed DOI
Vogel C., Marcotte E.M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC
Li C.W., Lim S.O., Xia W., Lee H.H., Chan L.C., Kuo C.W., Khoo K.H., Chang S.S., Cha J.H., Kim T., et al. Glycosylation and Stabilization of Programmed Death Ligand-1 Suppresses T-Cell Activity. Nat. Commun. 2016;7:12632. doi: 10.1038/ncomms12632. PubMed DOI PMC
Yao H., Lan J., Li C., Shi H., Brosseau J.P., Wang H., Lu H., Fang C., Zhang Y., Liang L., et al. Inhibiting PD-L1 Palmitoylation Enhances T-Cell Immune Responses Against Tumours. Nat. Biomed. Eng. 2019;3:306–317. doi: 10.1038/s41551-019-0375-6. PubMed DOI
Burr M.L., Sparbier C.E., Chan Y.C., Williamson J.C., Woods K., Beavis P.A., Lam E.Y.N., Henderson M.A., Bell C.C., Stolzenburg S., et al. CMTM6 Maintains the Expression of PD-L1 and Regulates Anti-Tumour Immunity. Nature. 2017;549:101–105. doi: 10.1038/nature23643. PubMed DOI PMC
Lin D.Y., Tanaka Y., Iwasaki M., Gittis A.G., Su H.P., Mikami B., Okazaki T., Honjo T., Minato N., Garboczi D.N. The PD-1/PD-L1 Complex Resembles the Antigen-Binding Fv Domains of Antibodies and T Cell Receptors. Proc. Natl. Acad. Sci. USA. 2008;105:3011–3016. doi: 10.1073/pnas.0712278105. PubMed DOI PMC
He X.H., Xu L.H., Liu Y. Identification of a Novel Splice Variant of Human PD-L1 mRNA Encoding an Isoform-Lacking Igv-Like Domain. Acta Pharmacol. Sin. 2005;26:462–468. doi: 10.1111/j.1745-7254.2005.00086.x. PubMed DOI
Garcia-Diaz A., Shin D.S., Moreno B.H., Saco J., Escuin-Ordinas H., Rodriguez G.A., Zaretsky J.M., Sun L., Hugo W., Wang X., et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell. Rep. 2017;19:1189–1201. doi: 10.1016/j.celrep.2017.04.031. PubMed DOI PMC
Gowrishankar K., Gunatilake D., Gallagher S.J., Tiffen J., Rizos H., Hersey P. Inducible but Not Constitutive Expression of PD-L1 in Human Melanoma Cells is Dependent on Activation of NF-kappaB. PLoS ONE. 2015;10:e0123410. doi: 10.1371/journal.pone.0123410. PubMed DOI PMC
Prestipino A., Zeiser R. Clinical Implications of Tumor-Intrinsic Mechanisms Regulating PD-L1. Sci. Transl. Med. 2019;11:eaav4810. doi: 10.1126/scitranslmed.aav4810. PubMed DOI
Noman M.Z., Desantis G., Janji B., Hasmim M., Karray S., Dessen P., Bronte V., Chouaib S. PD-L1 is a Novel Direct Target of HIF-1alpha, and its Blockade Under Hypoxia Enhanced MDSC-Mediated T Cell Activation. J. Exp. Med. 2014;211:781–790. doi: 10.1084/jem.20131916. PubMed DOI PMC
Ruf M., Moch H., Schraml P. PD-L1 Expression is Regulated by Hypoxia Inducible Factor in Clear Cell Renal Cell Carcinoma. Int. J. Cancer. 2016;139:396–403. doi: 10.1002/ijc.30077. PubMed DOI
Chen J., Jiang C.C., Jin L., Zhang X.D. Regulation of PD-L1: A Novel Role of Pro-Survival Signalling in Cancer. Ann. Oncol. 2016;27:409–416. doi: 10.1093/annonc/mdv615. PubMed DOI
Dong P., Xiong Y., Yue J., Hanley S.J.B., Watari H. Tumor-Intrinsic PD-L1 Signaling in Cancer Initiation, Development and Treatment: Beyond Immune Evasion. Front. Oncol. 2018;8:386. doi: 10.3389/fonc.2018.00386. PubMed DOI PMC
Marzec M., Zhang Q., Goradia A., Raghunath P.N., Liu X., Paessler M., Wang H.Y., Wysocka M., Cheng M., Ruggeri B.A., et al. Oncogenic Kinase NPM/ALK Induces through STAT3 Expression of Immunosuppressive Protein CD274 (PD-L1, B7-H1) Proc. Natl. Acad. Sci. USA. 2008;105:20852–20857. doi: 10.1073/pnas.0810958105. PubMed DOI PMC
Ota K., Azuma K., Kawahara A., Hattori S., Iwama E., Tanizaki J., Harada T., Matsumoto K., Takayama K., Takamori S., et al. Induction of PD-L1 Expression by the EML4-ALK Oncoprotein and Downstream Signaling Pathways in Non-Small Cell Lung Cancer. Clin. Cancer Res. 2015;21:4014–4021. doi: 10.1158/1078-0432.CCR-15-0016. PubMed DOI
Grafone T., Palmisano M., Nicci C., Storti S. An Overview on the Role of FLT3-Tyrosine Kinase Receptor in Acute Myeloid Leukemia: Biology and Treatment. Oncol. Rev. 2012;6:e8. doi: 10.4081/oncol.2012.e8. PubMed DOI PMC
Roolf C., Dybowski N., Sekora A., Mueller S., Knuebel G., Tebbe A., Murua Escobar H., Godl K., Junghanss C., Schaab C. Phosphoproteome Analysis Reveals Differential Mode of Action of Sorafenib in Wildtype and Mutated FLT3 Acute Myeloid Leukemia (AML) Cells. Mol. Cell. Proteom. 2017;16:1365–1376. doi: 10.1074/mcp.M117.067462. PubMed DOI PMC
Prestipino A., Emhardt A.J., Aumann K., O’Sullivan D., Gorantla S.P., Duquesne S., Melchinger W., Braun L., Vuckovic S., Boerries M., et al. Oncogenic JAK2(V617F) Causes PD-L1 Expression, Mediating Immune Escape in Myeloproliferative Neoplasms. Sci. Transl. Med. 2018;10:eaam7729. doi: 10.1126/scitranslmed.aam7729. PubMed DOI PMC
Fujita J., Mizuki M., Otsuka M., Ezoe S., Tanaka H., Satoh Y., Fukushima K., Tokunaga M., Matsumura I., Kanakura Y. Myeloid Neoplasm-Related Gene Abnormalities Differentially Affect Dendritic Cell Differentiation from Murine Hematopoietic stem/progenitor Cells. Immunol. Lett. 2011;136:61–73. doi: 10.1016/j.imlet.2010.12.006. PubMed DOI
Escors D., Gato-Canas M., Zuazo M., Arasanz H., Garcia-Granda M.J., Vera R., Kochan G. The Intracellular Signalosome of PD-L1 in Cancer Cells. Signal. Transduct Target Ther. 2018;3:26. doi: 10.1038/s41392-018-0022-9. PubMed DOI PMC
Kuzelova K., Brodska B., Fuchs O., Dobrovolna M., Soukup P., Cetkovsky P. Altered HLA Class I Profile Associated with Type A/D Nucleophosmin Mutation Points to Possible Anti-Nucleophosmin Immune Response in Acute Myeloid Leukemia. PLoS ONE. 2015;10:e0127637. doi: 10.1371/journal.pone.0127637. PubMed DOI PMC
Kuzelova K., Brodska B., Schetelig J., Rollig C., Racil Z., Walz J.S., Helbig G., Fuchs O., Vrana M., Pecherkova P., et al. Association of HLA Class I Type with Prevalence and Outcome of Patients with Acute Myeloid Leukemia and Mutated Nucleophosmin. PLoS ONE. 2018;13:e0204290. doi: 10.1371/journal.pone.0204290. PubMed DOI PMC
Greiner J., Ono Y., Hofmann S., Schmitt A., Mehring E., Gotz M., Guillaume P., Dohner K., Mytilineos J., Dohner H., et al. Mutated Regions of Nucleophosmin 1 Elicit both CD4(+) and CD8(+) T-Cell Responses in Patients with Acute Myeloid Leukemia. Blood. 2012;120:1282–1289. doi: 10.1182/blood-2011-11-394395. PubMed DOI
Greiner J., Schneider V., Schmitt M., Gotz M., Dohner K., Wiesneth M., Dohner H., Hofmann S. Immune Responses Against the Mutated Region of Cytoplasmatic NPM1 might Contribute to the Favorable Clinical Outcome of AML Patients with NPM1 Mutations (NPM1mut) Blood. 2013;122:1087–1088. doi: 10.1182/blood-2013-04-496844. PubMed DOI
Van der Lee D.I., Reijmers R.M., Honders M.W., Hagedoorn R.S., de Jong R.C., Kester M.G., van der Steen D.M., de Ru A.H., Kweekel C., Bijen H.M., et al. Mutated Nucleophosmin 1 as Immunotherapy Target in Acute Myeloid Leukemia. J. Clin. Invest. 2019;129:774–785. doi: 10.1172/JCI97482. PubMed DOI PMC
Forghieri F., Riva G., Lagreca I., Barozzi P., Vallerini D., Morselli M., Paolini A., Bresciani P., Colaci E., Maccaferri M., et al. Characterization and Dynamics of Specific T Cells Against Nucleophosmin-1 (NPM1)-Mutated Peptides in Patients with NPM1-Mutated Acute Myeloid Leukemia. Oncotarget. 2019;10:869–882. doi: 10.18632/oncotarget.26617. PubMed DOI PMC
Zhao Y., Harrison D.L., Song Y., Ji J., Huang J., Hui E. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in Cis to Attenuate PD-1 Signaling in T Cells. Cell. Rep. 2018;24:379–390. doi: 10.1016/j.celrep.2018.06.054. PubMed DOI PMC
Yao H., Wang H., Li C., Fang J.Y., Xu J. Cancer Cell-Intrinsic PD-1 and Implications in Combinatorial Immunotherapy. Front. Immunol. 2018;9:1774. doi: 10.3389/fimmu.2018.01774. PubMed DOI PMC