Quantitative Biology of Human Shelterin and Telomerase: Searching for the Weakest Point
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
16-20255S, 19-18226S
Grantová Agentura České Republiky
CEITEC 2020 (LQ1601)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
31261825
PubMed Central
PMC6651453
DOI
10.3390/ijms20133186
PII: ijms20133186
Knihovny.cz E-zdroje
- Klíčová slova
- anticancer, assembly, inhibitor, protein-DNA interaction, protein-protein interaction, quantitative biology, shelterin, telomerase, telomere,
- MeSH
- antitumorózní látky farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- proteiny vázající telomery chemie metabolismus MeSH
- shelterinový komplex MeSH
- telomerasa antagonisté a inhibitory chemie metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- inhibitory enzymů MeSH
- proteiny vázající telomery MeSH
- shelterinový komplex MeSH
- telomerasa MeSH
The repetitive telomeric DNA at chromosome ends is protected from unwanted repair by telomere-associated proteins, which form the shelterin complex in mammals. Recent works have provided new insights into the mechanisms of how human shelterin assembles and recruits telomerase to telomeres. Inhibition of telomerase activity and telomerase recruitment to chromosome ends is a promising target for anticancer therapy. Here, we summarize results of quantitative assessments and newly emerged structural information along with the status of the most promising approaches to telomerase inhibition in cancer cells. We focus on the mechanism of shelterin assembly and the mechanisms of how shelterin affects telomerase recruitment to telomeres, addressing the conceptual dilemma of how shelterin allows telomerase action and regulates other essential processes. We evaluate how the identified critical interactions of telomerase and shelterin might be elucidated in future research of new anticancer strategies.
Zobrazit více v PubMed
Levy M.Z., Allsopp R.C., Futcher A.B., Greider C.W., Harley C.B. Telomere end-replication problem and cell aging. J. Mol. Biol. 1992;225:951–960. doi: 10.1016/0022-2836(92)90096-3. PubMed DOI
Erdel F., Kratz K., Willcox S., Griffith J.D., Greene E.C., de Lange T. Telomere recognition and assembly mechanism of mammalian shelterin. Cell Rep. 2017;18:41–53. doi: 10.1016/j.celrep.2016.12.005. PubMed DOI PMC
Janovič T., Stojaspal M., Veverka P., Horáková D., Hofr C. Human telomere repeat binding factor TRF1 replaces TRF2 bound to shelterin core hub TIN2 when TPP1 is absent. J. Mol. Biol. 2019 doi: 10.1016/j.jmb.2019.05.038. PubMed DOI
De Lange T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 2018;52:223–247. doi: 10.1146/annurev-genet-032918-021921. PubMed DOI
Broccoli D., Smogorzewska A., Chong L., de Lange T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 1997;17:231–235. doi: 10.1038/ng1097-231. PubMed DOI
Janouskova E., Necasova I., Pavlouskova J., Zimmermann M., Hluchy M., Marini V., Novakova M., Hofr C. Human RAP1 modulates TRF2 attraction to telomeric DNA. Nucleic. Acids Res. 2015;43:2691–2700. doi: 10.1093/nar/gkv097. PubMed DOI PMC
Chen Y., Yang Y., van Overbeek M., Donigian J., Baciu P., de Lange T., Lei M. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science. 2008;319:1092–1096. doi: 10.1126/science.1151804. PubMed DOI
Ye J.Z.S., Donigian J.R., van Overbeek M., Loayza D., Luo Y., Krutchinsky A.N., Chait B.T., de Lange T. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 2004;279:47264–47271. doi: 10.1074/jbc.M409047200. PubMed DOI
Grill S., Tesmer V.M., Nandakumar J. The N terminus of the OB domain of telomere protein TPP1 is critical for telomerase action. Cell Rep. 2018;22:1132–1140. doi: 10.1016/j.celrep.2018.01.012. PubMed DOI PMC
Hu C., Rai R., Huang C., Broton C., Long J., Xu Y., Xue J., Lei M., Chang S., Chen Y. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell Res. 2017;27:1485–1502. doi: 10.1038/cr.2017.144. PubMed DOI PMC
Lei M., Podell E.R., Cech T.R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 2004;11:1223–1229. doi: 10.1038/nsmb867. PubMed DOI
Baumann P., Cech T.R. POT1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001;292:1171–1175. doi: 10.1126/science.1060036. PubMed DOI
Loayza D., Parsons H., Donigian J., Hoke K., de Lange T. DNA binding features of human POT1—A nonamer 5′-TAGGGTTAG-3′ minimal binding site, sequence specificity, and internal binding to multimeric sites. J. Biol. Chem. 2004;279:13241–13248. doi: 10.1074/jbc.M312309200. PubMed DOI
Lim C.J., Zaug A.J., Kim H.J., Cech T.R. Reconstitution of human shelterin complexes reveals unexpected stoichiometry and dual pathways to enhance telomerase processivity. Nat. Commun. 2017;8:1075. doi: 10.1038/s41467-017-01313-w. PubMed DOI PMC
Revzin A. The Biology of Nonspecific DNA–Protein Interactions. CRC Press; Boca Raton, FL, USA: 1990.
Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503–514. doi: 10.1016/S0092-8674(00)80760-6. PubMed DOI
Doksani Y., Wu J.Y., de Lange T., Zhuang X. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent t-loop formation. Cell. 2013;155:345–356. doi: 10.1016/j.cell.2013.09.048. PubMed DOI PMC
Nandakumar J., Cech T.R. Finding the end: Recruitment of telomerase to telomeres. Nat. Rev. Mol. Cell Biol. 2013;14:69–82. doi: 10.1038/nrm3505. PubMed DOI PMC
He Q., Zeng P., Tan J.-H., Ou T.-M., Gu L.-Q., Huang Z.-S., Li D. G-quadruplex-mediated regulation of telomere binding protein POT1 gene expression. BBA. 2014;1840:2222–2233. doi: 10.1016/j.bbagen.2014.03.001. PubMed DOI
De Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100–2110. doi: 10.1101/gad.1346005. PubMed DOI
Chen J.L., Blasco M.A., Greider C.W. Secondary structure of vertebrate telomerase RNA. Cell. 2000;100:503–514. doi: 10.1016/S0092-8674(00)80687-X. PubMed DOI
Mitchell J.R., Collins K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol. Cell. 2000;6:361–371. doi: 10.1016/S1097-2765(00)00036-8. PubMed DOI
Chen J.-L., Opperman K.K., Greider C.W. A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA. Nucleic. Acids Res. 2002;30:592–597. doi: 10.1093/nar/30.2.592. PubMed DOI PMC
Bley C.J., Qi X., Rand D.P., Borges C.R., Nelson R.W., Chen J.J.-L. RNA-protein binding interface in the telomerase ribonucleoprotein. PNAS. 2011;108:20333–20338. doi: 10.1073/pnas.1100270108. PubMed DOI PMC
Chen J.-L., Greider C.W. Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility. EMBO J. 2003;22:304–314. doi: 10.1093/emboj/cdg024. PubMed DOI PMC
Lai C.K., Miller M.C., Collins K. Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol. Cell. 2003;11:1673–1683. doi: 10.1016/S1097-2765(03)00232-6. PubMed DOI PMC
Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L.C., Coviello G.M., Wright W.E., Weinrich S.L., Shay J.W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015. doi: 10.1126/science.7605428. PubMed DOI
Horn S., Figl A., Rachakonda P.S., Fischer C., Sucker A., Gast A., Kadel S., Moll I., Nagore E., Hemminki K., et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339:959–961. doi: 10.1126/science.1230062. PubMed DOI
Huang F.W., Hodis E., Xu M.J., Kryukov G.V., Chin L., Garraway L.A. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–959. doi: 10.1126/science.1229259. PubMed DOI PMC
Dokal I. Dyskeratosis congenita. Hematol. Am. Soc. Hematol. Educ. Program. 2011;2011:480–486. doi: 10.1182/asheducation-2011.1.480. PubMed DOI
Lingner J., Hughes T.R., Shevchenko A., Mann M., Lundblad V., Cech T.R. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science. 1997;276:561–567. doi: 10.1126/science.276.5312.561. PubMed DOI
Meyerson M., Counter C.M., Eaton E.N., Ellisen L.W., Steiner P., Caddle S.D., Ziaugra L., Beijersbergen R.L., Davidoff M.J., Liu Q., et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997;90:785–795. doi: 10.1016/S0092-8674(00)80538-3. PubMed DOI
Wu R.A., Tam J., Collins K. DNA-binding determinants and cellular thresholds for human telomerase repeat addition processivity. EMBO J. 2017;36:1908–1927. doi: 10.15252/embj.201796887. PubMed DOI PMC
Mitchell J.R., Wood E., Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999;402:551–555. doi: 10.1038/990141. PubMed DOI
Egan E.D., Collins K. Biogenesis of telomerase ribonucleoproteins. RNA. 2012;18:1747–1759. doi: 10.1261/rna.034629.112. PubMed DOI PMC
Nguyen T.H.D., Tam J., Wu R.A., Greber B.J., Toso D., Nogales E., Collins K. Cryo-em structure of substrate-bound human telomerase holoenzyme. Nature. 2018;557:190–195. doi: 10.1038/s41586-018-0062-x. PubMed DOI PMC
Alves D., Li H., Codrington R., Orte A., Ren X., Klenerman D., Balasubramanian S. Single-molecule analysis of human telomerase monomer. Nat. Chem. Biol. 2008;4:287. doi: 10.1038/nchembio.82. PubMed DOI
Jiang J., Miracco E.J., Hong K., Eckert B., Chan H., Cash D.D., Min B., Zhou Z.H., Collins K., Feigon J. The architecture of tetrahymena telomerase holoenzyme. Nature. 2013;496:187–192. doi: 10.1038/nature12062. PubMed DOI PMC
Egan E.D., Collins K. Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol. Cell. Biol. 2010;30:2775–2786. doi: 10.1128/MCB.00151-10. PubMed DOI PMC
Wu R.A., Dagdas Y.S., Yilmaz S.T., Yildiz A., Collins K. Single-molecule imaging of telomerase reverse transcriptase in human telomerase holoenzyme and minimal RNP complexes. Elife. 2015;4 doi: 10.7554/eLife.08363. PubMed DOI PMC
Lue N.F. A physical and functional constituent of telomerase anchor site. J. Biol. Chem. 2005;280:26586–26591. doi: 10.1074/jbc.M503028200. PubMed DOI PMC
Moriarty T.J., Ward R.J., Taboski M.A.S., Autexier C. An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol. Biol. Cell. 2005;16:3152–3161. doi: 10.1091/mbc.e05-02-0148. PubMed DOI PMC
Jurczyluk J., Nouwens A.S., Holien J.K., Adams T.E., Lovrecz G.O., Parker M.W., Cohen S.B., Bryan T.M. Direct involvement of the TEN domain at the active site of human telomerase. Nucleic Acids Res. 2011;39:1774–1788. doi: 10.1093/nar/gkq1083. PubMed DOI PMC
Armbruster B.N., Banik S.S., Guo C., Smith A.C., Counter C.M. N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol. Cell. Biol. 2001;21:7775–7786. doi: 10.1128/MCB.21.22.7775-7786.2001. PubMed DOI PMC
Schmidt J.C., Zaug A.J., Kufer R., Cech T.R. Dynamics of human telomerase recruitment depend on template-telomere base pairing. Mol. Biol. Cell. 2018;29:869–880. doi: 10.1091/mbc.E17-11-0637. PubMed DOI PMC
Podlevsky J.D., Chen J.J.-L. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 2016;13:720–732. doi: 10.1080/15476286.2016.1205768. PubMed DOI PMC
Chan H., Wang Y., Feigon J. Progress in human and tetrahymena telomerase structure determination. Annu. Rev. Biophys. 2017;46:199–225. doi: 10.1146/annurev-biophys-062215-011140. PubMed DOI PMC
Theimer C.A., Blois C.A., Feigon J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell. 2005;17:671–682. doi: 10.1016/j.molcel.2005.01.017. PubMed DOI
Shefer K., Brown Y., Gorkovoy V., Nussbaum T., Ulyanov N.B., Tzfati Y. A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. Mol. Cell. Biol. 2007;27:2130–2143. doi: 10.1128/MCB.01826-06. PubMed DOI PMC
Qiao F., Cech T.R. Triple-helix structure in telomerase RNA contributes to catalysis. Nat. Struct. Mol. Biol. 2008;15:634–640. doi: 10.1038/nsmb.1420. PubMed DOI PMC
Schmidt J.C., Zaug A.J., Cech T.R. Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell. 2016 doi: 10.1016/j.cell.2016.07.033. PubMed DOI PMC
Schmidt J.C., Dalby A.B., Cech T.R. Identification of human TERT elements necessary for telomerase recruitment to telomeres. Elife. 2014;3 doi: 10.7554/eLife.03563. PubMed DOI PMC
Zhao Y., Sfeir A.J., Zou Y., Buseman C.M., Chow T.T., Shay J.W., Wright W.E. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell. 2009;138:463–475. doi: 10.1016/j.cell.2009.05.026. PubMed DOI PMC
Cristofari G., Lingner J. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J. 2006;25:565–574. doi: 10.1038/sj.emboj.7600952. PubMed DOI PMC
Xi L.H., Schmidt J.C., Zaug A.J., Ascarrunz D.R., Cech T.R. A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol. 2015;16 doi: 10.1186/s13059-015-0791-1. PubMed DOI PMC
Venteicher A.S., Abreu E.B., Meng Z., McCann K.E., Terns R.M., Veenstra T.D., Terns M.P., Artandi S.E. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science. 2009;323:644–648. doi: 10.1126/science.1165357. PubMed DOI PMC
Xin H., Liu D., Wan M., Safari A., Kim H., Sun W., O’Connor M.S., Songyang Z. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature. 2007;445:559. doi: 10.1038/nature05469. PubMed DOI
Zhong F.L., Batista L.F.Z., Freund A., Pech M.F., Venteicher A.S., Artandi S.E. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell. 2012;150:481–494. doi: 10.1016/j.cell.2012.07.012. PubMed DOI PMC
Sexton A.N., Youmans D.T., Collins K. Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J. Biol. Chem. 2012;287:34455–34464. doi: 10.1074/jbc.M112.394767. PubMed DOI PMC
Abreu E., Aritonovska E., Reichenbach P., Cristofari G., Culp B., Terns R.M., Lingner J., Terns M.P. TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol. Cell. Biol. 2010;30:2971–2982. doi: 10.1128/MCB.00240-10. PubMed DOI PMC
Smogorzewska A., van Steensel B., Bianchi A., Oelmann S., Schaefer M.R., Schnapp G., de Lange T. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 2000;20:1659–1668. doi: 10.1128/MCB.20.5.1659-1668.2000. PubMed DOI PMC
Marcand S., Gilson E., Shore D. A protein-counting mechanism for telomere length regulation in yeast. Science. 1997;275:986–990. doi: 10.1126/science.275.5302.986. PubMed DOI
O’Connor M.S., Safari A., Xin H.W., Liu D., Songyang Z. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl. Acad. Sci. USA. 2006;103:11874–11879. doi: 10.1073/pnas.0605303103. PubMed DOI PMC
Liu D., O’Connor M.S., Qin J., Songyang Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 2004;279:51338–51342. doi: 10.1074/jbc.M409293200. PubMed DOI
Rice C., Shastrula P.K., Kossenkov A.V., Hills R., Baird D.M., Showe L.C., Doukov T., Janicki S., Skordalakes E. Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat. Commun. 2017;8:14928. doi: 10.1038/ncomms14928. PubMed DOI PMC
Wang F., Podell E.R., Zaug A.J., Yang Y.T., Baciu P., Cech T.R., Lei M. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature. 2007;445:506–510. doi: 10.1038/nature05454. PubMed DOI
Nandakumar J., Bell C.F., Weidenfeld I., Zaug A.J., Leinwand L.A., Cech T.R. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature. 2012;492:285–289. doi: 10.1038/nature11648. PubMed DOI PMC
Dalby A.B., Hofr C., Cech T.R. Contributions of the TEL-patch amino acid cluster on TPP1 to telomeric DNA synthesis by human telomerase. J. Mol. Biol. 2015;427:1291–1303. doi: 10.1016/j.jmb.2015.01.008. PubMed DOI PMC
Necasova I., Janouskova E., Klumpler T., Hofr C. Basic domain of telomere guardian TRF2 reduces d-loop unwinding whereas RAP1 restores it. Nucleic Acids Res. 2017;45:12170–12180. doi: 10.1093/nar/gkx812. PubMed DOI PMC
Berardinelli F., Coluzzi E., Sgura A., Antoccia A. Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. Mutat. Res. 2017;773:204–219. doi: 10.1016/j.mrrev.2017.02.004. PubMed DOI
Schrank Z., Khan N., Osude C., Singh S., Miller R.J., Merrick C., Mabel A., Kuckovic A., Puri N. Oligonucleotides targeting telomeres and telomerase in cancer. Molecules. 2018;23:2267. doi: 10.3390/molecules23092267. PubMed DOI PMC
Allsopp R.C., Vaziri H., Patterson C., Goldstein S., Younglai E.V., Futcher A.B., Greider C.W., Harley C.B. Telomere length predicts replicative capacity of human fibroblasts. PNAS. 1992;89:10114–10118. doi: 10.1073/pnas.89.21.10114. PubMed DOI PMC
Dikmen Z.G., Gellert G.C., Jackson S., Gryaznov S., Tressler R., Dogan P., Wright W.E., Shay J.W. In vivo inhibition of lung cancer by GRN163L: A novel human telomerase inhibitor. Cancer Res. 2005;65:7866–7873. doi: 10.1158/0008-5472.CAN-05-1215. PubMed DOI
Ruden M., Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat. Rev. 2013;39:444–456. doi: 10.1016/j.ctrv.2012.06.007. PubMed DOI
Gryaznov S.M., Jackson S., Dikmen G., Harley C., Herbert B.-S., Wright W.E., Shay J.W. Oligonucleotide conjugate GRN163L targeting human telomerase as potential anticancer and antimetastatic agent. Nucleosides Nucleotides Nucleic Acids. 2007;26:1577–1579. doi: 10.1080/15257770701547271. PubMed DOI
Jackson S.R., Zhu C.-H., Paulson V., Watkins L., Dikmen Z.G., Gryaznov S.M., Wright W.E., Shay J.W. Antiadhesive effects of GRN163L-an oligonucleotide N3′->P5′ thio-phosphoramidate targeting telomerase. Cancer Res. 2007;67:1121–1129. doi: 10.1158/0008-5472.CAN-06-2306. PubMed DOI
Shea-Herbert B., Pongracz K., Shay J.W., Gryaznov S.M. Oligonucleotide N3′→P5′ phosphoramidates as efficient telomerase inhibitors. Oncogene. 2002;21:638. doi: 10.1038/sj.onc.1205064. PubMed DOI
Asai A., Oshima Y., Yamamoto Y., Uochi T.-A., Kusaka H., Akinaga S., Yamashita Y., Pongracz K., Pruzan R., Wunder E., et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res. 2003;63:3931–3939. PubMed
Gryaznov S., Pongracz K., Matray T., Schultz R., Pruzan R., Aimi J., Chin A., Harley C., Shea-Herbert B., Shay J., et al. Telomerase inhibitors—Oligonucleotide phosphoramidates as potential therapeutic agents. Nucleosides Nucleotides Nucleic Acids. 2001;20:401–410. doi: 10.1081/NCN-100002314. PubMed DOI
Jafri M.A., Ansari S.A., Alqahtani M.H., Shay J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8:69. doi: 10.1186/s13073-016-0324-x. PubMed DOI PMC
Tokcaer-Keskin Z., Dikmen Z.G., Ayaloglu-Butun F., Gultekin S., Gryaznov S.M., Akcali K.C. The effect of telomerase template antagonist GRN163L on bone-marrow-derived rat mesenchymal stem cells is reversible and associated with altered expression of cyclin D1, CDK4 and CDK6. Stem Cell Rev. 2010;6:224–233. doi: 10.1007/s12015-010-9124-7. PubMed DOI
Salloum R., Hummel T.R., Kumar S.S., Dorris K., Li S., Lin T., Daryani V.M., Stewart C.F., Miles L., Poussaint T.Y., et al. A molecular biology and phase II study of Imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: A pediatric brain tumor consortium study. J. Neurooncol. 2016;129:443–451. doi: 10.1007/s11060-016-2189-7. PubMed DOI PMC
Chiappori A.A., Kolevska T., Spigel D.R., Hager S., Rarick M., Gadgeel S., Blais N., Von Pawel J., Hart L., Reck M., et al. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann. Oncol. 2015;26:354–362. doi: 10.1093/annonc/mdu550. PubMed DOI PMC
Gomez-Millan J., Goldblatt E.M., Gryaznov S.M., Mendonca M.S., Herbert B.-S. Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 2007;67:897–905. doi: 10.1016/j.ijrobp.2006.09.038. PubMed DOI
Wu X., Zhang J., Yang S., Kuang Z., Tan G., Yang G., Wei Q., Guo Z. Telomerase antagonist Imetelstat increases radiation sensitivity in esophageal squamous cell carcinoma. Oncotarget. 2017;8:13600–13619. doi: 10.18632/oncotarget.14618. PubMed DOI PMC
Ferrandon S., Malleval C., El Hamdani B., Battiston-Montagne P., Bolbos R., Langlois J.-B., Manas P., Gryaznov S.M., Alphonse G., Honnorat J., et al. Telomerase inhibition improves tumor response to radiotherapy in a murine orthotopic model of human glioblastoma. Mol. Cancer. 2015;14:134. doi: 10.1186/s12943-015-0376-3. PubMed DOI PMC
Puri N., Eller M.S., Byers H.R., Dykstra S., Kubera J., Gilchrest B.A. Telomere-based DNA damage responses: A new approach to melanoma. FASEB J. 2004;18:1373–1381. doi: 10.1096/fj.04-1774com. PubMed DOI
Ohashi N., Yaar M., Eller M.S., Truzzi F., Gilchrest B.A. Features that determine telomere homolog oligonucleotide-induced therapeutic DNA damage-like responses in cancer cells. J. Cell. Physiol. 2007;210:582–595. doi: 10.1002/jcp.20848. PubMed DOI
Pitman R.T., Wojdyla L., Puri N. Mechanism of DNA damage responses induced by exposure to an oligonucleotide homologous to the telomere overhang in melanoma. Oncotarget. 2013;4:761–771. doi: 10.18632/oncotarget.1047. PubMed DOI PMC
Puri N., Pitman R.T., Mulnix R.E., Erickson T., Iness A.N., Vitali C., Zhao Y., Salgia R. Non-small cell lung cancer is susceptible to induction of DNA damage responses and inhibition of angiogenesis by telomere overhang oligonucleotides. Cancer Lett. 2014;343:14–23. doi: 10.1016/j.canlet.2013.09.010. PubMed DOI PMC
Chhabra G., Wojdyla L., Frakes M., Schrank Z., Leviskas B., Ivancich M., Vinay P., Ganapathy R., Ramirez B.E., Puri N. Mechanism of action of G-quadruplex-forming oligonucleotide homologous to the telomere overhang in melanoma. J.Invest. Derm. 2018;138:903–910. doi: 10.1016/j.jid.2017.11.021. PubMed DOI
Longe H.O., Romesser P.B., Rankin A.M., Faller D.V., Eller M.S., Gilchrest B.A., Denis G.V. Telomere homolog oligonucleotides induce apoptosis in malignant but not in normal lymphoid cells: Mechanism and therapeutic potential. Int. J. Cancer. 2009;124:473–482. doi: 10.1002/ijc.23946. PubMed DOI PMC
Crees Z., Girard J., Rios Z., Botting G.M., Harrington K., Shearrow C., Wojdyla L., Stone A.L., Uppada S.B., Devito J.T., et al. Oligonucleotides and G-quadruplex stabilizers: Targeting telomeres and telomerase in cancer therapy. Curr. Pharm. Des. 2014;20:6422–6437. doi: 10.2174/1381612820666140630100702. PubMed DOI
Kolhatkar V., Khambati H., Lote A., Shanine P., Insley T., Sen S., Munirathinam G., Král P., Kolhatkar R. Star-shaped tetraspermine enhances cellular uptake and cytotoxicity of T-oligo in prostate cancer cells. Pharm. Res. 2015;32:196–210. doi: 10.1007/s11095-014-1455-7. PubMed DOI
Li G.-Z., Eller M.S., Hanna K., Gilchrest B.A. Signaling pathway requirements for induction of senescence by telomere homolog oligonucleotides. Exp. Cell. Res. 2004;301:189–200. doi: 10.1016/j.yexcr.2004.08.019. PubMed DOI
Van Steensel B., Smogorzewska A., de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92:401–413. doi: 10.1016/S0092-8674(00)80932-0. PubMed DOI
Ivancich M., Schrank Z., Wojdyla L., Leviskas B., Kuckovic A., Sanjali A., Puri N. Treating cancer by targeting telomeres and telomerase. Antioxidants. 2017;6:15. doi: 10.3390/antiox6010015. PubMed DOI PMC