An ATM-PPM1D Circuit Controls the Processing and Restart of DNA Replication Forks

. 2025 May 15 ; () : . [epub] 20250515

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid40462982

In response to DNA replication stress, DNA damage signaling kinases inhibit origin firing and promote the remodeling and stabilization of replication forks, leading to a systemic reduction in DNA synthesis that protects genomic integrity. Little is understood about the regulatory mechanisms of replication stress recovery, including the mechanisms involved in the restart of stalled replication forks. Here, we identify the oncogenic phosphatase PPM1D/WIP1 as a critical regulator of replication fork restart. Upon recovery from replication stress, PPM1D prevents excessive MRE11- and DNA2-dependent nucleolytic degradation of stalled forks. Loss of PPM1D function leads to defects in RAD51 recruitment to chromatin and impairs RAD51-dependent fork restart. Phosphoproteomic analysis reveals that PPM1D regulates a network of ATM substrates, several of which are phosphorylated at an S/T-Q-(E/D)n motif. Strikingly, inhibition of ATM suppresses the deleterious consequences of impaired PPM1D function at replication forks, enabling timely fork restart. The dominant effect of ATM hyper-signaling in suppressing fork restart occurs, in part, through the excessive engagement of 53BP1 and consequent RAD51 antagonization. These findings uncover a new mode of ATM signaling responding to fork stalling and highlights the need for PPM1D to restrain ATM signaling and enable proper fork restart.

Zobrazit více v PubMed

Zeman M. K., Cimprich K. A., Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014). PubMed PMC

Saxena S., Zou L., Hallmarks of DNA replication stress. Mol. Cell 82, 2298–2314 (2022). PubMed PMC

Pasero P., Vindigni A., Nucleases acting at stalled forks: How to reboot the replication program with a few shortcuts. Annu. Rev. Genet. 51, 477–499 (2017). PubMed

Nam E. A., Cortez D., ATR signalling: more than meeting at the fork. Biochem. J 436, 527–536 (2011). PubMed PMC

Toledo L. I., Altmeyer M., Rask M.-B., Lukas C., Larsen D. H., Povlsen L. K., Bekker-Jensen S., Mailand N., Bartek J., Lukas J., ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103 (2013). PubMed

Bertolin A. P., Canal B., Yekezare M., Zeng J., Instrell R., Howell M., Diffley J. F. X., The mechanism of checkpoint-dependent DNA replication fork stabilization in human cells, bioRxiv (2024). 10.1101/2024.11.01.621514. DOI

Leung W., Simoneau A., Saxena S., Jackson J., Patel P. S., Limbu M., Vindigni A., Zou L., ATR protects ongoing and newly assembled DNA replication forks through distinct mechanisms. Cell Rep. 42, 112792 (2023). PubMed PMC

El-Shemerly M., Hess D., Pyakurel A. K., Moselhy S., Ferrari S., ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic Acids Res. 36, 511–519 (2008). PubMed PMC

Li S., Lavagnino Z., Lemacon D., Kong L., Ustione A., Ng X., Zhang Y., Wang Y., Zheng B., Piwnica-Worms H., Vindigni A., Piston D. W., You Z., Ca2+-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection. Mol. Cell 74, 1123–1137.e6 (2019). PubMed PMC

Berti M., Cortez D., Lopes M., The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020). PubMed

Quinet A., Lemaçon D., Vindigni A., Replication Fork Reversal: Players and Guardians. Mol. Cell 68, 830–833 (2017). PubMed PMC

Adolph M. B., Cortez D., Mechanisms and regulation of replication fork reversal. DNA Repair 141, 103731 (2024). PubMed PMC

Mutreja K., Krietsch J., Hess J., Ursich S., Berti M., Roessler F. K., Zellweger R., Patra M., Gasser G., Lopes M., ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links. Cell Rep. 24, 2629–2642.e5 (2018). PubMed PMC

Dibitetto D., Marshall S., Sanchi A., Liptay M., Badar J., Lopes M., Rottenberg S., Smolka M. B., DNA-PKcs promotes fork reversal and chemoresistance. Mol. Cell 82, 3932–3942.e6 (2022). PubMed PMC

Minca E. C., Kowalski D., Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation. Nucleic Acids Res. 39, 2610–2623 (2011). PubMed PMC

Bugreev D. V., Brosh R. M. Jr, Mazin A. V., RECQ1 possesses DNA branch migration activity. J. Biol. Chem. 283, 20231–20242 (2008). PubMed PMC

Thangavel S., Berti M., Levikova M., Pinto C., Gomathinayagam S., Vujanovic M., Zellweger R., Moore H., Lee E. H., Hendrickson E. A., Cejka P., Stewart S., Lopes M., Vindigni A., DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208, 545–562 (2015). PubMed PMC

Costantino L., Sotiriou S. K., Rantala J. K., Magin S., Mladenov E., Helleday T., Haber J. E., Iliakis G., Kallioniemi O. P., Halazonetis T. D., Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014). PubMed PMC

Hastings P. J., Lupski J. R., Rosenberg S. M., Ira G., Mechanisms of change in gene copy number. Nat. Rev. Genet. 10, 551–564 (2009). PubMed PMC

Ensminger M., Löbrich M., One end to rule them all: Non-homologous end-joining and homologous recombination at DNA double-strand breaks. Br. J. Radiol. 93, 20191054 (2020). PubMed PMC

Gyüre Z., Póti Á., Németh E., Szikriszt B., Lózsa R., Krawczyk M., Richardson A. L., Szüts D., Spontaneous mutagenesis in human cells is controlled by REV1-Polymerase ζ and PRIMPOL. Cell Rep. 42, 112887 (2023). PubMed

Mazouzi A., Stukalov A., Müller A. C., Chen D., Wiedner M., Prochazkova J., Chiang S.-C., Schuster M., Breitwieser F. P., Pichlmair A., El-Khamisy S. F., Bock C., Kralovics R., Colling J., Bennett K. L., Loizou J. I., A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN. Cell Rep. 15, 893–908 (2016). PubMed

Kanu N., Zhang T., Burrell R. A., Chakraborty A., Cronshaw J., DaCosta C., Grönroos E., Pemberton H. N., Anderton E., Gonzalez L., Sabbioneda S., Ulrich H. D., Swanton C., Behrens A., RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene 35, 4009–4019 (2016). PubMed PMC

Wagner S. A., Oehler H., Voigt A., Dalic D., Freiwald A., Serve H., Beli P., ATR inhibition rewires cellular signaling networks induced by replication stress. Proteomics 16, 402–416 (2016). PubMed

Nakamura K., Kustatscher G., Alabert C., Hödl M., Forne I., Völker-Albert M., Satpathy S., Beyer T. E., Mailand N., Choudhary C., Imhof A., Rappsilber J., Groth A., Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol. Cell 81, 1084–1099.e6 (2021). PubMed PMC

Ribeyre C., Zellweger R., Chauvin M., Bec N., Larroque C., Lopes M., Constantinou A., Nascent DNA Proteomics Reveals a Chromatin Remodeler Required for Topoisomerase I Loading at Replication Forks. Cell Rep. 15, 300–309 (2016). PubMed

Ashley A. K., Shrivastav M., Nie J., Amerin C., Troksa K., Glanzer J. G., Liu S., Opiyo S. O., Dimitrova D. D., Le P., Sishc B., Bailey S. M., Oakley G. G., Nickoloff J. A., DNA-PK phosphorylation of RPA32 Ser4/Ser8 regulates replication stress checkpoint activation, fork restart, homologous recombination and mitotic catastrophe. DNA Repair (Amst) 21, 131–139 (2014). PubMed PMC

Ying S., Chen Z., Medhurst A. L., Neal J. A., Bao Z., Mortusewicz O., McGouran J., Song X., Shen H., Hamdy F. C., Kessler B. M., Meek K., Helleday T., DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair. Cancer Res 76, 1078–1088 (2016). PubMed PMC

Lanz M. C., Dibitetto D., Smolka M. B., DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J. 38, e101801 (2019). PubMed PMC

Waterman D. P., Haber J. E., Smolka M. B., Checkpoint responses to DNA double-strand breaks. Annu. Rev. Biochem. 89, 103–133 (2020). PubMed PMC

Lee D.-H., Chowdhury D., What goes on must come off: phosphatases gate-crash the DNA damage response. Trends Biochem. Sci. 36, 569–577 (2011). PubMed PMC

Shimada M., Nakanishi M., Response to DNA damage: why do we need to focus on protein phosphatases? Front. Oncol. 3, 8 (2013). PubMed PMC

Lu X., Nannenga B., Donehower L. A., PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev. 19, 1162–1174 (2005). PubMed PMC

Lu X., Nguyen T.-A., Zhang X., Donehower L. A., The Wip1 phosphatase and Mdm2: cracking the “Wip” on p53 stability. Cell Cycle 7, 164–168 (2008). PubMed

Shreeram S., Demidov O. N., Hee W. K., Yamaguchi H., Onishi N., Kek C., Timofeev O. N., Dudgeon C., Fornace A. J., Anderson C. W., Minami Y., Appella E., Bulavin D. V., Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell 23, 757–764 (2006). PubMed

Macůrek L., Lindqvist A., Voets O., Kool J., Vos H. R., Medema R. H., Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition. Oncogene 29, 2281–2291 (2010). PubMed

Lu X., Nguyen T.-A., Moon S.-H., Darlington Y., Sommer M., Donehower L. A., The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev. 27, 123–135 (2008). PubMed PMC

Kahn J. D., Miller P. G., Silver A. J., Sellar R. S., Bhatt S., Gibson C., McConkey M., Adams D., Mar B., Mertins P., Fereshetian S., Krug K., Zhu H., Letai A., Carr S. A., Doench J., Jaiswal S., Ebert B. L., PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132, 1095–1105 (2018). PubMed PMC

Kleiblova P., Shaltiel I. A., Benada J., Ševčík J., Pecháčková S., Pohlreich P., Voest E. E., Dundr P., Bartek J., Kleibl Z., Medema R. H., Macurek L., Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J. Cell Biol. 201, 511–521 (2013). PubMed PMC

Stoyanov M., Martinikova A. S., Matejkova K., Horackova K., Zemankova P., Burdova K., Zemanova Z., Kleiblova P., Kleibl Z., Macurek L., PPM1D activity promotes cellular transformation by preventing senescence and cell death. Oncogene 43, 3081–3093 (2024). PubMed PMC

Burocziova M., Danek P., Oravetzova A., Chalupova Z., Alberich-Jorda M., Macurek L., Ppm1d truncating mutations promote the development of genotoxic stress-induced AML. Leukemia 37, 2209–2220 (2023). PubMed PMC

Hsu J. I., Dayaram T., Tovy A., De Braekeleer E., Jeong M., Wang F., Zhang J., Heffernan T. P., Gera S., Kovacs J. J., Marszalek J. R., Bristow C., Yan Y., Garcia-Manero G., Kantarjian H., Vassiliou G., Futreal P. A., Donehower L. A., Takahashi K., Goodell M. A., PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell 23, 700–713.e6 (2018). PubMed PMC

Lu X., Nguyen T.-A., Donehower L. A., Reversal of the ATM/ATR-mediated DNA damage response by the oncogenic phosphatase PPM1D. Cell Cycle 4, 1060–1064 (2005). PubMed

Cha H., Lowe J. M., Li H., Lee J.-S., Belova G. I., Bulavin D. V., Fornace A. J. Jr, Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res. 70, 4112–4122 (2010). PubMed PMC

Yamaguchi H., Durell S. R., Chatterjee D. K., Anderson C. W., Appella E., The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. Biochemistry 46, 12594–12603 (2007). PubMed

Gräf J. F., Mikicic I., Ping X., Scalera C., Mayr K., Stelzl L. S., Beli P., Wagner S. A., Substrate spectrum of PPM1D in the cellular response to DNA double-strand breaks. iScience 25, 104892 (2022). PubMed PMC

Gilmartin A. G., Faitg T. H., Richter M., Groy A., Seefeld M. A., Darcy M. G., Peng X., Federowicz K., Yang J., Zhang S.-Y., Minthorn E., Jaworski J.-P., Schaber M., Martens S., McNulty D. E., Sinnamon R. H., Zhang H., Kirkpatrick R. B., Nevins N., Cui G., Pietrak B., Diaz E., Jones A., Brandt M., Schwartz B., Heerding D. A., Kumar R., Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat. Chem. Biol. 10, 181–187 (2014). PubMed

Petermann E., Orta M. L., Issaeva N., Schultz N., Helleday T., Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010). PubMed PMC

Macurek L., Benada J., Müllers E., Halim V. A., Krejčíková K., Burdová K., Pecháčková S., Hodný Z., Lindqvist A., Medema R. H., Bartek J., Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis. Cell Cycle 12, 251–262 (2013). PubMed PMC

Khadka P., Reitman Z. J., Lu S., Buchan G., Gionet G., Dubois F., Carvalho D. M., Shih J., Zhang S., Greenwald N. F., Zack T., Shapira O., Pelton K., Hartley R., Bear H., Georgis Y., Jarmale S., Melanson R., Bonanno K., Schoolcraft K., Miller P. G., Condurat A. L., Gonzalez E. M., Qian K., Morin E., Langhnoja J., Lupien L. E., Rendo V., Digiacomo J., Wang D., Zhou K., Kumbhani R., Guerra Garcia M. E., Sinai C. E., Becker S., Schneider R., Vogelzang J., Krug K., Goodale A., Abid T., Kalani Z., Piccioni F., Beroukhim R., Persky N. S., Root D. E., Carcaboso A. M., Ebert B. L., Fuller C., Babur O., Kieran M. W., Jones C., Keshishian H., Ligon K. L., Carr S. A., Phoenix T. N., Bandopadhayay P., PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nat. Commun. 13, 604 (2022). PubMed PMC

Yan J., Yang X.-P., Kim Y.-S., Jetten A. M., RAP80 responds to DNA damage induced by both ionizing radiation and UV irradiation and is phosphorylated at Ser 205. Cancer Res 68, 4269–4276 (2008). PubMed PMC

Sobhian B., Shao G., Lilli D. R., Culhane A. C., Moreau L. A., Xia B., Livingston D. M., Greenberg R. A., RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007). PubMed PMC

Kim S.-T., Xu B., Kastan M. B., Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002). PubMed PMC

Salvador Moreno N., Liu J., Haas K. M., Parker L. L., Chakraborty C., Kron S. J., Hodges K., Miller L. D., Langefeld C., Robinson P. J., Lelièvre S. A., Vidi P.-A., The nuclear structural protein NuMA is a negative regulator of 53BP1 in DNA double-strand break repair. Nucleic Acids Res. 47, 2703–2715 (2019). PubMed PMC

Ziv Y., Bielopolski D., Galanty Y., Lukas C., Taya Y., Schultz D. C., Lukas J., Bekker-Jensen S., Bartek J., Shiloh Y., Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 8, 870–876 (2006). PubMed

Jaiswal H., Benada J., Müllers E., Akopyan K., Burdova K., Koolmeister T., Helleday T., Medema R. H., Macurek L., Lindqvist A., ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration. EMBO J. 36, 2161–2176 (2017). PubMed PMC

Kolinjivadi A. M., Sannino V., de Antoni A., Técher H., Baldi G., Costanzo V., Moonlighting at replication forks - a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. 591, 1083–1100 (2017). PubMed

Wang Z., Xu C., Diplas B. H., Moure C. J., Chen C.-P. J., Chen L. H., Du C., Zhu H., Greer P. K., Zhang L., He Y., Waitkus M. S., Yan H., Targeting Mutant PPM1D Sensitizes Diffuse Intrinsic Pontine Glioma Cells to the PARP Inhibitor Olaparib. Mol. Cancer Res. 18, 968–980 (2020). PubMed

Burdova K., Storchova R., Palek M., Macurek L., WIP1 promotes homologous recombination and modulates sensitivity to PARP inhibitors. Cells 8, 1258 (2019). PubMed PMC

Rappold I., Iwabuchi K., Date T., Chen J., Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol. 153, 613–620 (2001). PubMed PMC

Feng L., Li N., Li Y., Wang J., Gao M., Wang W., Chen J., Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1. Cell Discov. 1, 15019 (2015). PubMed PMC

Pavani R., Tripathi V., Vrtis K. B., Zong D., Chari R., Callen E., Pankajam A. V., Zhen G., Matos-Rodrigues G., Yang J., Wu S., Reginato G., Wu W., Cejka P., Walter J. C., Nussenzweig A., Structure and repair of replication-coupled DNA breaks. Science 385, eado3867 (2024). PubMed PMC

Blackford A. N., Jackson S. P., ATM, ATR, and DNA-PK: The Trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017). PubMed

Comstock W. J., Navarro M. V., Maybee D. V., Rho Y., Wagner M., Wang Y., Smolka M. B., Proteomic sensors for quantitative, multiplexed and spatial monitoring of kinase signaling, bioRxivorg (2024). 10.1101/2024.12.16.628391. DOI

Johnson J. L., Yaron T. M., Huntsman E. M., Kerelsky A., Song J., Regev A., Lin T.-Y., Liberatore K., Cizin D. M., Cohen B. M., Vasan N., Ma Y., Krismer K., Robles J. T., van de Kooij B., van Vlimmeren A. E., Andrée-Busch N., Käufer N. F., Dorovkov M. V., Ryazanov A. G., Takagi Y., Kastenhuber E. R., Goncalves M. D., Hopkins B. D., Elemento O., Taatjes D. J., Maucuer A., Yamashita A., Degterev A., Uduman M., Lu J., Landry S. D., Zhang B., Cossentino I., Linding R., Blenis J., Hornbeck P. V., Turk B. E., Yaffe M. B., Cantley L. C., An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023). PubMed PMC

Bakkenist C. J., Kastan M. B., DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003). PubMed

Guo Z., Kozlov S., Lavin M. F., Person M. D., Paull T. T., ATM activation by oxidative stress. Science 330, 517–521 (2010). PubMed

Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D. J., Prakash A., Frericks-Zipper A., Eisenacher M., Walzer M., Wang S., Brazma A., Vizcaíno J. A., The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50, D543–D552 (2022). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...