Doporučené postupy klinické péče o nosiče patogenních variant v klinicky relevantních nádorových predispozičních genech definují kroky primární a sekundární prevence, která by měla být těmto osobám ve vysokém riziku vzniku dědičných nádorů v ČR poskytnuta. Tvorba doporučení byla organizována pracovní skupinou onkogenetiky Společnosti lékařské genetiky a genomiky (SLG ČLS JEP) ve spolupráci se zástupci onkologie a onkogynekologie. Doporučené postupy vycházejí z aktuálních doporučení National Comprehensive Cancer Network (NCCN), European Society of Medical Oncology (ESMO) a zohledňují kapacitní možnosti našeho zdravotnictví.
The Guidelines for Clinical Practice for carriers of pathogenic variants in clinically relevant cancer predisposition genes define the steps of primary and secondary prevention that should be provided to these individuals at high risk of developing hereditary cancer in the Czech Republic. The drafting of the guidelines was organized by the Oncogenetics Working Group of the Society for Medical Genetics and Genomics of J. E. Purkyně Czech Medical Society (SLG ČLS JEP) in cooperation with the representatives of oncology and oncogynecology. The guidelines are based on the current recommendations of the National Comprehensive Cancer Network (NCCN), European Society of Medical Oncology (ESMO) and take into account the capacity of the Czech healthcare system.
- MeSH
- ATM protein genetika MeSH
- checkpoint kinasa 2 genetika MeSH
- genetická predispozice k nemoci * MeSH
- geny BRCA1 MeSH
- geny BRCA2 MeSH
- nádory prostaty diagnóza genetika prevence a kontrola MeSH
- nádory prsu diagnóza genetika prevence a kontrola MeSH
- nádory slinivky břišní diagnóza genetika prevence a kontrola MeSH
- nádory vaječníků diagnóza genetika prevence a kontrola MeSH
- primární prevence metody MeSH
- protein FANCN genetika MeSH
- sekundární prevence metody MeSH
- směrnice pro lékařskou praxi jako téma MeSH
- zárodečné mutace MeSH
The subset of ovarian cancer (OC) diagnosed ≤ 30yo represents a distinct subgroup exhibiting disparities from late-onset OC in many aspects, including indefinite germline cancer predisposition. We performed DNA/RNA-WES with HLA-typing, PRS assessment and survival analysis in 123 early-onset OC-patients compared to histology/stage-matched late-onset and unselected OC-patients, and population-matched controls. Only 6/123(4.9%) early-onset OC-patients carried a germline pathogenic variant (GPV) in high-penetrance OC-predisposition genes. Nevertheless, our comprehensive germline analysis of early-onset OC-patients revealed two divergent trajectories of potential germline susceptibility. Firstly, overrepresentation analysis highlighted a connection to breast cancer (BC) that was supported by the CHEK2 GPV enrichment in early-onset OC(p = 1.2 × 10-4), and the presumably BC-specific PRS313, which successfully stratified early-onset OC-patients from controls(p = 0.03). The second avenue pointed towards the impaired immune response, indicated by LY75-CD302 GPV(p = 8.3 × 10-4) and diminished HLA diversity compared with controls(p = 3 × 10-7). Furthermore, we found a significantly higher overall GPV burden in early-onset OC-patients compared to controls(p = 3.8 × 10-4). The genetic predisposition to early-onset OC appears to be a heterogeneous and complex process that goes beyond the traditional Mendelian monogenic understanding of hereditary cancer predisposition, with a significant role of the immune system. We speculate that rather a cumulative overall GPV burden than specific GPV may potentially increase OC risk, concomitantly with reduced HLA diversity.
- MeSH
- checkpoint kinasa 2 genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory vaječníků * genetika MeSH
- studie případů a kontrol MeSH
- věk při počátku nemoci * MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Germline CHEK2 pathogenic variants confer an increased risk of female breast cancer (FBC). Here we describe a recurrent germline intronic variant c.1009-118_1009-87delinsC, which showed a splice acceptor shift in RNA analysis, introducing a premature stop codon (p.Tyr337PhefsTer37). The variant was found in 21/10,204 (0.21%) Czech FBC patients compared to 1/3250 (0.03%) controls (p = 0.04) and in 4/3639 (0.11%) FBC patients from an independent German dataset. In addition, we found this variant in 5/2966 (0.17%) Czech (but none of the 443 German) ovarian cancer patients, three of whom developed early-onset tumors. Based on these observations, we classified this variant as likely pathogenic.
- MeSH
- checkpoint kinasa 2 * genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci * genetika MeSH
- introny * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prsu * genetika MeSH
- nádory vaječníků genetika MeSH
- prekurzory RNA genetika MeSH
- sestřih RNA * genetika MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
PURPOSE: Germline pathogenic variants in CHEK2 confer moderately elevated breast cancer risk (odds ratio, OR ∼ 2.5), qualifying carriers for enhanced breast cancer screening. Besides pathogenic variants, dozens of missense CHEK2 variants of uncertain significance (VUS) have been identified, hampering the clinical utility of germline genetic testing (GGT). EXPERIMENTAL DESIGN: We collected 460 CHEK2 missense VUS identified by the ENIGMA consortium in 15 countries. Their functional characterization was performed using CHEK2-complementation assays quantifying KAP1 phosphorylation and CHK2 autophosphorylation in human RPE1-CHEK2-knockout cells. Concordant results in both functional assays were used to categorize CHEK2 VUS from 12 ENIGMA case-control datasets, including 73,048 female patients with breast cancer and 88,658 ethnicity-matched controls. RESULTS: A total of 430/460 VUS were successfully analyzed, of which 340 (79.1%) were concordant in both functional assays and categorized as functionally impaired (N = 102), functionally intermediate (N = 12), or functionally wild-type (WT)-like (N = 226). We then examined their association with breast cancer risk in the case-control analysis. The OR and 95% CI (confidence intervals) for carriers of functionally impaired, intermediate, and WT-like variants were 2.83 (95% CI, 2.35-3.41), 1.57 (95% CI, 1.41-1.75), and 1.19 (95% CI, 1.08-1.31), respectively. The meta-analysis of population-specific datasets showed similar results. CONCLUSIONS: We determined the functional consequences for the majority of CHEK2 missense VUS found in patients with breast cancer (3,660/4,436; 82.5%). Carriers of functionally impaired missense variants accounted for 0.5% of patients with breast cancer and were associated with a moderate risk similar to that of truncating CHEK2 variants. In contrast, 2.2% of all patients with breast cancer carried functionally wild-type/intermediate missense variants with no clinically relevant breast cancer risk in heterozygous carriers.
- MeSH
- checkpoint kinasa 2 genetika MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- missense mutace MeSH
- nádory prsu * epidemiologie genetika MeSH
- zárodečné buňky MeSH
- zárodečné mutace MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
- MeSH
- alely MeSH
- celogenomová asociační studie MeSH
- checkpoint kinasa 1 genetika MeSH
- checkpoint kinasa 2 genetika MeSH
- diabetes mellitus 2. typu MeSH
- dieta MeSH
- dlouhověkost genetika MeSH
- dospělí MeSH
- fertilita genetika MeSH
- genetická predispozice k nemoci MeSH
- kosti a kostní tkáň metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- menopauza genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- ovarium metabolismus MeSH
- předčasná menopauza genetika MeSH
- primární ovariální insuficience genetika MeSH
- protein FMRP genetika MeSH
- stárnutí genetika MeSH
- uterus MeSH
- zdravé stárnutí genetika MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Dálný východ MeSH
- Evropa MeSH
Familial inheritance in non-medullary thyroid cancer (NMTC) is an area that has yet to be adequately explored. Despite evidence suggesting strong familial clustering of non-syndromic NMTC, known variants still account for a very small percentage of the genetic burden. In a recent whole genome sequencing (WGS) study of five families with several NMTCs, we shortlisted promising variants with the help of our in-house developed Familial Cancer Variant Prioritization Pipeline (FCVPPv2). Here, we report potentially disease-causing variants in checkpoint kinase 2 (CHEK2), Ewing sarcoma breakpoint region 1 (EWSR1) and T-lymphoma invasion and metastasis-inducing protein 1 (TIAM1) in one family. Performing WGS on three cases, one probable case and one healthy individual in a family with familial NMTC left us with 112254 variants with a minor allele frequency of less than 0.1%, which was reduced by pedigree-based filtering to 6368. Application of the pipeline led to the prioritization of seven coding and nine non-coding variants from this family. The variant identified in CHEK2, a known tumor suppressor gene involved in DNA damage-induced DNA repair, cell cycle arrest, and apoptosis, has been previously identified as a germline variant in breast and prostate cancer and has been functionally validated by Roeb et al. in a yeast-based assay to have an intermediate effect on protein function. We thus hypothesized that this family may harbor additional disease-causing variants in other functionally related genes. We evaluated two further variants in EWSR1 and TIAM1 with promising in silico results and reported interaction in the DNA-damage repair pathway. Hence, we propose a polygenic mode of inheritance in this family. As familial NMTC is considered to be more aggressive than its sporadic counterpart, it is important to identify such susceptibility genes and their associated pathways. In this way, the advancement of personalized medicine in NMTC patients can be fostered. We also wish to reopen the discussion on monogenic vs polygenic inheritance in NMTC and instigate further development in this area of research.
- MeSH
- checkpoint kinasa 2 chemie genetika metabolismus MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci * MeSH
- genom lidský MeSH
- lidé MeSH
- papilární karcinom štítné žlázy genetika metabolismus MeSH
- protein EWS vázající RNA chemie genetika metabolismus MeSH
- protein TIAM1 chemie genetika metabolismus MeSH
- rodokmen MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
- MeSH
- checkpoint kinasa 2 chemie genetika metabolismus MeSH
- genetická predispozice k nemoci * MeSH
- lidé MeSH
- mutační rychlost MeSH
- nádory enzymologie genetika MeSH
- substrátová specifita MeSH
- zárodečné mutace genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Breast cancer is currently the most common form of malignant tumour in womenboth in the Czech Republic and in most countries of the western world, and its incidence is constantly increasing. Many risk factors are known to play a major role in the development of this form of cancer. One of them is genetics, especially the BRCA1/2 genes. A higher risk of ovarian cancer is also associated with these genes. With the development of laboratory diagnostics massive parallel sequencing methods (NGS) are now routinely employed, enabling the detection of other pathogenic sequence variants, or variants of uncertain significance (VUS) not previously detected. Besides the high penetrance BRCA1/2 genes, medium and low penetrant genes also come to the fore. There were 2046 probands examined in the study, men and women, mainly from eastern part of the Czech Republic. These were selected for a genetic examination, after meeting indication criteria (probands from high-risk families or with breast or ovarian cancer). From this group only women, 2033 probands, were selected and were given a genetic examination for the possible presence of patogenic sequence variants in BRCA1/2 genes, or other candidate genes. Analyses were conducted in the laboratory using DHPLC or next generation sequencing. MLPA method is used for large rearrangements in genes. From all examined women 212 mutations were detected. The most mutations (128) were found in the BRCA1 gene (60%). In the BRCA2 gene 71 mutations (34%) were found and 13 more mutations (6%) were detected in another candidate genes (CHEK2, PALB2, ERCC4). The most frequent sequence variant was c.5266dupC in the BRCA1 gene. The results show that 72% of women with a confirmed mutation in the BRCA1 gene and 77.5% of women with the sequence variant BRCA2, already had breast cancer and 16.4% of women with BRCA1 and 7% of women with BRCA2 already had ovarian cancer. Only 21 high risk families used the possibility to be tested and had undergone targeted mutation testing. The study results suggest a reflection of the causes and needs for examination of patients and women predisposed to breast or ovarian cancer.
- MeSH
- checkpoint kinasa 2 genetika MeSH
- DNA vazebné proteiny genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- genetické testování MeSH
- geny BRCA1 fyziologie MeSH
- geny BRCA2 fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- mutační rychlost * MeSH
- nádory prsu epidemiologie genetika MeSH
- nádory vaječníků epidemiologie genetika MeSH
- protein BRCA1 genetika MeSH
- protein BRCA2 genetika MeSH
- protein FANCN genetika MeSH
- prsy patologie MeSH
- tumor supresorové geny fyziologie MeSH
- zárodečné mutace genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Germline mutations in checkpoint kinase 2 (CHEK2), a multiple cancer-predisposing gene, increase breast cancer (BC) risk; however, risk estimates differ substantially in published studies. We analyzed germline CHEK2 variants in 1,928 high-risk Czech breast/ovarian cancer (BC/OC) patients and 3,360 population-matched controls (PMCs). For a functional classification of VUS, we developed a complementation assay in human nontransformed RPE1-CHEK2-knockout cells quantifying CHK2-specific phosphorylation of endogenous protein KAP1. We identified 10 truncations in 46 (2.39%) patients and in 11 (0.33%) PMC (p = 1.1 × 10-14 ). Two types of large intragenic rearrangements (LGR) were found in 20/46 mutation carriers. Truncations significantly increased unilateral BC risk (OR = 7.94; 95%CI 3.90-17.47; p = 1.1 × 10-14 ) and were more frequent in patients with bilateral BC (4/149; 2.68%; p = 0.003), double primary BC/OC (3/79; 3.80%; p = 0.004), male BC (3/48; 6.25%; p = 8.6 × 10-4 ), but not with OC (3/354; 0.85%; p = 0.14). Additionally, we found 26 missense VUS in 88 (4.56%) patients and 131 (3.90%) PMC (p = 0.22). Using our functional assay, 11 variants identified in 15 (0.78%) patients and 6 (0.18%) PMC were scored deleterious (p = 0.002). Frequencies of functionally intermediate and neutral variants did not differ between patients and PMC. Functionally deleterious CHEK2 missense variants significantly increased BC risk (OR = 3.90; 95%CI 1.24-13.35; p = 0.009) and marginally OC risk (OR = 4.77; 95%CI 0.77-22.47; p = 0.047); however, carriers low frequency will require evaluation in larger studies. Our study highlights importance of LGR detection for CHEK2 analysis, careful consideration of ethnicity in both cases and controls for risk estimates, and demonstrates promising potential of newly developed human nontransformed cell line assay for functional CHEK2 VUS classification.
- MeSH
- buněčné linie MeSH
- checkpoint kinasa 2 genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- genový knockout MeSH
- lidé středního věku MeSH
- lidé MeSH
- missense mutace MeSH
- mladý dospělý MeSH
- nádory prsu u mužů genetika MeSH
- nádory prsu genetika MeSH
- nádory vaječníků genetika MeSH
- sekvenční delece MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Genetic testing for cancer predisposition leads to the identification of a number of variants with uncertain significance. To some extent, variants of BRCA1/2 have been classified, in contrast to variants of other genes. CHEK2 is a typical example, in which a large number of variants of unknown clinical significance were identified and still remained unclassified. Herein, the CHEK2 variant assessment was performed through an in vivo, yeast-based, functional assay. In total, 120 germline CHEK2 missense variants, distributed along the protein sequence, and two large in-frame deletions were tested, originating from genetic test results in breast cancer families, or selected from the ClinVar database. Of these, 32 missense and two in-frame deletions behaved as non-functional, 73 as functional, and 15 as semi-functional, after comparing growth rates of each strain with positive and negative controls. The majority of non-functional variants were localized in the CHK2 kinase and forkhead-associated domains. In vivo results from the non-functional variants were in agreement with in silico predictions, and, where available, with strong breast cancer family history, to a great extent. The results of the largest, to date, yeast-based assay, evaluating CHEK2 variants, can complement and assist in the classification of rare CHEK2 variants with unclear clinical significance.
- MeSH
- alely MeSH
- checkpoint kinasa 2 genetika metabolismus MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- mutace * MeSH
- rodokmen MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- substituce aminokyselin MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH