• This record comes from PubMed

Somatic genetic alterations in a large cohort of pediatric thyroid nodules

. 2019 Jun ; 8 (6) : 796-805.

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print

Document type Journal Article

Links

PubMed 31085772
PubMed Central PMC6590202
DOI 10.1530/ec-19-0069
PII: EC-19-0069.R1
Knihovny.cz E-resources

There is a rise in the incidence of thyroid nodules in pediatric patients. Most of them are benign tissues, but part of them can cause papillary thyroid cancer (PTC). The aim of this study was to detect the mutations in commonly investigated genes as well as in novel PTC-causing genes in thyroid nodules and to correlate the found mutations with clinical and pathological data. The cohort of 113 pediatric samples consisted of 30 benign lesions and 83 PTCs. DNA from samples was used for next-generation sequencing to identify mutations in the following genes: HRAS, KRAS, NRAS, BRAF, IDH1, CHEK2, PPM1D, EIF1AX, EZH1 and for capillary sequencing in case of the TERT promoter. RNA was used for real-time PCR to detect RET/PTC1 and RET/PTC3 rearrangements. Total detection rate of mutations was 5/30 in benign tissues and 35/83 in PTCs. Mutations in RAS genes (HRAS G13R, KRAS G12D, KRAS Q61R, NRAS Q61R) were detected in benign lesions and HRAS Q61R and NRAS Q61K mutations in PTCs. The RET/PTC rearrangement was identified in 18/83 of PTCs and was significantly associated with higher frequency of local and distant metastases. The BRAF V600E mutation was identified in 15/83 of PTCs and significantly correlated with higher age of patients and classical variant of PTC. Germline variants in the genes IDH1, CHEK2 and PPM1D were found. In conclusion, RET/PTC rearrangements and BRAF mutations were associated with different clinical and histopathological features of pediatric PTC. RAS mutations were detected with high frequency in patients with benign nodules; thus, our results suggest that these patients should be followed up intensively.

See more in PubMed

Hogan AR, Zhuge Y, Perez EA, Koniaris LG, Lew JI, Sola JE. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. Journal of Surgical Research 2009. 156 . (10.1016/j.jss.2009.03.098) PubMed DOI

Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocrine-Related Cancer 2006. 13 . (10.1677/erc.1.00882) PubMed DOI

Vigneri R, Malandrino P, Vigneri P. The changing epidemiology of thyroid cancer: why is incidence increasing? Current Opinion in Oncology 2015. 27 . (10.1097/CCO.0000000000000148) PubMed DOI

Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID, Luster M, et al Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid 2015. 25 . (10.1089/thy.2014.0460) PubMed DOI PMC

Mitsutake N, Fukushima T, Matsuse M, Rogounovitch T, Saenko V, Uchino S, Ito M, Suzuki K, Suzuki S, Yamashita S. BRAFV600E mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl. Scientific Reports 2015. 5 16976 (10.1038/srep16976) PubMed DOI PMC

Mon R, Newlon J. Anaplastic carcinoma of the thyroid in a 12-year old girl. Journal of Pediatric Surgery Case Reports 2015. 3 . (10.1016/j.epsc.2015.08.004) DOI

Cordioli MICV, Moraes L, Cury AN, Cerutti JM. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocrine-Related Cancer 2015. 22 R311–R324. (10.1530/ERC-15-0381) PubMed DOI

Gertz RJ, Nikiforov Y, Rehrauer W, McDaniel L, Lloyd RV. Mutation in BRAF and other members of the MAPK pathway in papillary thyroid carcinoma in the pediatric population. Archives of Pathology and Laboratory Medicine 2016. 140 . (10.5858/arpa.2014-0612-OA) PubMed DOI PMC

Oishi N, Kondo T, Nakazawa T, Mochizuki K, Inoue T, Kasai K, Tahara I, Yabuta T, Hirokawa M, Miyauchi A, et al Frequent BRAF V600E and absence of tert promoter mutations characterize sporadic pediatric papillary thyroid carcinomas in Japan. Endocrine Pathology 2017. 28 . (10.1007/s12022-017-9470-y) PubMed DOI

Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World Journal of Surgery 2010. 34 . (10.1007/s00268-009-0364-0) PubMed DOI

Penko K, Livezey J, Fenton C, Patel A, Nicholson D, Flora M, Oakley K, Tuttle RM, Francis G. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid 2005. 15 . (10.1089/thy.2005.15.320) PubMed DOI

Borre PV, Schrock AB, Anderson PM, Morris JC, Heilmann AM, Holmes O, Wang K, Johnson A, Waguespack SG, Ou SI, et al Pediatric, adolescent, and young adult thyroid carcinoma harbors frequent and diverse targetable genomic alterations, including kinase fusions. Oncologist 2017. 22 . (10.1634/theoncologist.2016-0279) PubMed DOI PMC

Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014. 159 . (10.1016/j.cell.2014.09.050) PubMed DOI PMC

Hemerly JP, Bastos AU, Cerutti JM. Identification of several novel non-p. R132 IDH1 variants in thyroid carcinomas. European Journal of Endocrinology 2010. 163 . (10.1530/EJE-10-0473) PubMed DOI

Calebiro D, Grassi ES, Eszlinger M, Ronchi CL, Godbole A, Bathon K, Guizzardi F, De Filippis T, Krohn K, Jaeschke H, et al Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas. Journal of Clinical Investigation 2016. 126 . (10.1172/JCI84894) PubMed DOI PMC

Jung CK, Kim Y, Jeon S, Jo K, Lee S, Bae JS. Clinical utility of EZH1 mutations in the diagnosis of follicular-patterned thyroid tumors. Human Pathology 2018. 81 . (10.1016/j.humpath.2018.04.018) PubMed DOI

Dvorakova S, Sykorova V, Vaclavikova E, Sykorova P, Vlcek P, Kodetova D, Lastuvka P, Betka J, Mokrejs M, Vcelak J, et al A 3-bp deletion VK600-1E in the BRAF gene detected in a young woman with papillary thyroid carcinoma. Endocrine Pathology 2015. 26 . (10.1007/s12022-015-9387-2) PubMed DOI

Halkova T, Dvorakova S, Vaclavikova E, Sykorova V, Vcelak J, Sykorova P, Vlcek P, Reboun M, Katra R, Kodetova D, et al A novel RET/PTC variant detected in a pediatric patient with papillary thyroid cancer without ionization history. Human Pathology 2015. 46 . (10.1016/j.humpath.2015.08.013) PubMed DOI

Ballester LY, Sarabia SF, Sayeed H, Patel N, Baalwa J, Athanassaki I, Hernandez JA, Fang E, Quintanilla NM, Roy A, et al Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatric and Developmental Pathology 2016. 19 . (10.2350/15-05-1638-OA.1) PubMed DOI

Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, Witchel SF, Gurtunca N, Joyce J, Zhong S, et al Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatric and Developmental Pathology 2016. 19 . (10.2350/15-07-1667-OA.1) PubMed DOI PMC

Eszlinger M, Niedziela M, Typlt E, Jaeschke H, Huth S, Schaarschmidt J, Aigner T, Trejster E, Krohn K, Bösenberg E, et al Somatic mutations in 33 benign and malignant hot thyroid nodules in children and adolescents. Molecular and Cellular Endocrinology 2014. 393 . (10.1016/j.mce.2014.05.023) PubMed DOI

Alzahrani AS, Murugan AK, Qasem E, Alswailem M, Al-Hindi H, Shi Y. Single point mutations in pediatric differentiated thyroid cancer. Thyroid 2017. 27 . (10.1089/thy.2016.0339) PubMed DOI

Mostoufi-Moab S, Labourier E, Sullivan L, LiVolsi V, Li Y, Xiao R, Beaudenon-Huibregtse S, Kazahaya K, Adzick NS, Baloch Z, et al Molecular testing for oncogenic gene alterations in pediatric thyroid lesions. Thyroid 2018. 28 . (10.1089/thy.2017.0059) PubMed DOI PMC

Patel SG, Carty SE, McCoy KL, Ohori NP, LeBeau SO, Seethala RR, Nikiforova MN, Nikiforov YE, Yip L. Preoperative detection of RAS mutation may guide extent of thyroidectomy. Surgery 2017. 161 . (10.1016/j.surg.2016.04.054) PubMed DOI PMC

Kato S, Lippman SM, Flaherty KT, Kurzrock R. The conundrum of genetic ‘drivers’ in benign conditions. Journal of the National Cancer Institute 2016. 108 djw036 (10.1093/jnci/djw036) PubMed DOI PMC

Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, Basolo F, Pinchera A, Pilotti S, Pierotti MA. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. Journal of Clinical Endocrinology and Metabolism 1996. 81 . (10.1210/jcem.81.5.8626874) PubMed DOI

Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. Journal of Clinical Endocrinology and Metabolism 2000. 85 . (10.1210/jcem.85.3.6472) PubMed DOI

Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, Basolo F, Demidchik EP, Miccoli P, Pinchera A, et al RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. Journal of Clinical Endocrinology and Metabolism 2001. 86 . (10.1210/jcem.86.7.7678) PubMed DOI

Zou M, Baitei EY, Alzahrani AS, BinHumaid FS, Alkhafaji D, Al-Rijjal RA, Meyer BF, Shi Y. Concomitant RAS, RET/PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma. Thyroid 2014. 24 . (10.1089/thy.2013.0610) PubMed DOI PMC

Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, Grigsby PW. BRAF V600E mutational status in pediatric thyroid cancer. Pediatric Blood and Cancer 2014. 61 . (10.1002/pbc.24935) PubMed DOI

Kumagai A, Namba H, Saenko VA, Ashizawa K, Ohtsuru A, Ito M, Ishikawa N, Sugino K, Ito K, Jeremiah S, et al Low frequency of BRAF T1796A mutations in childhood thyroid carcinomas. Journal of Clinical Endocrinology and Metabolism 2004. 89 . (10.1210/jc.2004-0172) PubMed DOI

Nikita ME, Jiang W, Cheng SM, Hantash FM, McPhaul MJ, Newbury RO, Phillips SA, Reitz RE, Waldman FM, Newfield RS. Mutational analysis in pediatric thyroid cancer and correlations with age, ethnicity, and clinical presentation. Thyroid 2016. 26 . (10.1089/thy.2015.0401) PubMed DOI PMC

Cybulski C, Gorski B, Huzarski T, Masojć B, Mierzejewski M, Dębniak T, Teodorczyk U, Byrski T, Gronwald J, Matyjasik J, et al CHEK2 is a multiorgan cancer susceptibility gene. American Journal of Human Genetics 2004. 75 . (10.1086/426403) PubMed DOI PMC

Siołek M, Cybulski C, Gąsior‐Perczak D, Kowalik A, Kozak‐Klonowska B, Kowalska A, Chłopek M, Kluźniak W, Wokołorczyk D, Pałyga I, et al CHEK 2 mutations and the risk of papillary thyroid cancer. International Journal of Cancer 2015. 137 . (10.1002/ijc.29426) PubMed DOI

Kaczmarek-Ryś M, Ziemnicka K, Hryhorowicz ST, Górczak K, Hoppe-Gołębiewska J, Skrzypczak-Zielińska M, Tomys M, Gołąb M, Szkudlarek M, Budny B, et al The c.470T>C CHEK2 missense variant increases the risk of differentiated thyroid carcinoma in the Great Poland population. Hereditary Cancer in Clinical Practice 2015. 13 8 (10.1186/s13053-015-0030-5) PubMed DOI PMC

Desrichard A, Bidet Y, Uhrhammer N, Bignon YJ. CHEK2 contribution to hereditary breast cancer in non-BRCA families. Breast Cancer Research 2011. 13 R119 (10.1186/bcr3062) PubMed DOI PMC

Alzahrani AS, Murugan AK, Qasem E, Alswailem MM, AlGhamdi B, Moria Y, Al-Hindi H. Absence of EIF1AX, PPM1D, and CHEK2 mutations reported in thyroid Cancer Genome Atlas (TCGA) in a large series of thyroid cancer. Endocrine 2018. 63 . (10.1007/s12020-018-1762-6) PubMed DOI

Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, Pai S, Bishop J. BRAF V600E and tert promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. Journal of Clinical Oncology 2014. 32 . (10.1200/JCO.2014.55.5094) PubMed DOI PMC

Alzahrani AS, Qasem E, Murugan AK, Al-Hindi HN, AlKhafaji D, Almohanna M, Xing M, Alhomaidah D, AlSwailem M. Uncommon tert promoter mutations in pediatric thyroid cancer. Thyroid 2016. 26 . (10.1089/thy.2015.0510) PubMed DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...