Low Frequency of Cancer-Predisposition Gene Mutations in Liver Transplant Candidates with Hepatocellular Carcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-03-00285
Ministry of Health
NU20-03-00283
Ministry of Health
64165
Ministry of Health
23001
Ministry of Health
COOPERATIO
Charles University
SVV260516
Charles University
LX22NPO05102
Ministry of Education Youth and Sports
LX22NPO5104
Ministry of Education Youth and Sports
PubMed
36612198
PubMed Central
PMC9818325
DOI
10.3390/cancers15010201
PII: cancers15010201
Knihovny.cz E-zdroje
- Klíčová slova
- MRN complex, genetic predisposition, germline mutation, hepatocellular carcinoma, liver cirrhosis, liver transplantation, panel sequencing,
- Publikační typ
- časopisecké články MeSH
Hepatocellular carcinoma (HCC) mainly stems from liver cirrhosis and its genetic predisposition is believed to be rare. However, two recent studies describe pathogenic/likely pathogenic germline variants (PV) in cancer-predisposition genes (CPG). As the risk of de novo tumors might be increased in PV carriers, especially in immunosuppressed patients after a liver transplantation, we analyzed the prevalence of germline CPG variants in HCC patients considered for liver transplantation. Using the panel NGS targeting 226 CPGs, we analyzed germline DNA from 334 Czech HCC patients and 1662 population-matched controls. We identified 48 PVs in 35 genes in 47/334 patients (14.1%). However, only 7/334 (2.1%) patients carried a PV in an established CPG (PMS2, 4×NBN, FH or RET). Only the PV carriers in two MRN complex genes (NBN and RAD50) were significantly more frequent among patients over controls. We found no differences in clinicopathological characteristics between carriers and non-carriers. Our study indicated that the genetic component of HCC is rare. The HCC diagnosis itself does not meet criteria for routine germline CPG genetic testing. However, a low proportion of PV carriers may benefit from a tailored follow-up or targeted therapy and germline testing could be considered in liver transplant recipients.
Department of Biochemistry Faculty of Natural Science Charles University 12800 Prague Czech Republic
Zobrazit více v PubMed
Yang J.D., Hainaut P., Gores G.J., Amadou A., Plymoth A., Roberts L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019;16:589–604. doi: 10.1038/s41575-019-0186-y. PubMed DOI PMC
Akinyemiju T., Abera S., Ahmed M., Alam N., Alemayohu M.A., Allen C., Al-Raddadi R., Alvis-Guzman N., Amoako Y., Artaman A., et al. The Burden of Primary Liver Cancer and Underlying Etiologies from 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol. 2017;3:1683–1691. PubMed PMC
European Association For The Study of The Liver. European Organisation for Research and Treatment of Cancer EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2012;56:908–943. doi: 10.1016/j.jhep.2011.12.001. PubMed DOI
Sangiovanni A., Prati G.M., Fasani P., Ronchi G., Romeo R., Manini M., Del Ninno E., Morabito A., Colombo M. The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients. Hepatology. 2006;43:1303–1310. doi: 10.1002/hep.21176. PubMed DOI
van der Meer A.J., Veldt B.J., Feld J.J., Wedemeyer H., Dufour J.F., Lammert F., Duarte-Rojo A., Heathcote E.J., Manns M.P., Kuske L., et al. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis. JAMA. 2012;308:2584–2593. doi: 10.1001/jama.2012.144878. PubMed DOI
Colmenero J., Tabrizian P., Bhangui P., Pinato D.J., Rodriguez-Peralvarez M.L., Sapisochin G., Bhoori S., Pascual S., Senzolo M., Al-Adra D., et al. De Novo Malignancy after Liver Transplantation: Risk Assessment, Prevention, and Management-Guidelines From the ILTS-SETH Consensus Conference. Transplantation. 2022;106:e30–e45. doi: 10.1097/TP.0000000000003998. PubMed DOI
Daniel K.E., Eickhoff J., Lucey M.R. Why do patients die after a liver transplantation? Clin. Transpl. 2017;31:e12906. doi: 10.1111/ctr.12906. PubMed DOI
Ozturk M. Genetic aspects of hepatocellular carcinogenesis. Semin. Liver Dis. 1999;19:235–242. doi: 10.1055/s-2007-1007113. PubMed DOI
Uson Junior P.L., Kunze K.L., Golafshar M.A., Riegert-Johnson D., Boardman L., Borad M.J., Ahn D., Sonbol M.B., Faigel D.O., Fukami N., et al. Germline Cancer Susceptibility Gene Testing in Unselected Patients with Hepatobiliary Cancers: A Multi-Center Prospective Study. Cancer Prev. Res. 2022;15:121–128. doi: 10.1158/1940-6207.CAPR-21-0189. PubMed DOI PMC
Mezina A., Philips N., Bogus Z., Erez N., Xiao R., Fan R., Olthoff K.M., Reddy K.R., Samadder N.J., Nielsen S.M., et al. Multigene Panel Testing in Individuals With Hepatocellular Carcinoma Identifies Pathogenic Germline Variants. JCO Precis. Oncol. 2021;5:988–1000. doi: 10.1200/PO.21.00079. PubMed DOI PMC
Lhotova K., Stolarova L., Zemankova P., Vocka M., Janatova M., Borecka M., Cerna M., Jelinkova S., Kral J., Volkova Z., et al. Multigene Panel Germline Testing of 1333 Czech Patients with Ovarian Cancer. Cancers. 2020;12:956. doi: 10.3390/cancers12040956. PubMed DOI PMC
Soukupova J., Zemankova P., Lhotova K., Janatova M., Borecka M., Stolarova L., Lhota F., Foretova L., Machackova E., Stranecky V., et al. Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS ONE. 2018;13:e0195761. doi: 10.1371/journal.pone.0195761. PubMed DOI PMC
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Cingolani P., Platts A., Wang Le L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC
Ye K., Schulz M.H., Long Q., Apweiler R., Ning Z. Pindel: A pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25:2865–2871. doi: 10.1093/bioinformatics/btp394. PubMed DOI PMC
Smit A., Hubley R., Green P. RepeatMasker Open-4.0. 2013–2015. [(accessed on 29 November 2022)]. Available online: http://www.repeatmasker.org.
Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alfoldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC
Karczewski K.J., Weisburd B., Thomas B., Solomonson M., Ruderfer D.M., Kavanagh D., Hamamsy T., Lek M., Samocha K.E., Cummings B.B., et al. The ExAC browser: Displaying reference data information from over 60,000 exomes. Nucleic Acids Res. 2017;45:D840–D845. doi: 10.1093/nar/gkw971. PubMed DOI PMC
Genomes Project C., Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. PubMed PMC
Exome Variant Server. [(accessed on 1 April 2022)]. Available online: https://evs.gs.washington.edu/EVS/
Landrum M.J., Lee J.M., Benson M., Brown G.R., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Jang W., et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–D1067. doi: 10.1093/nar/gkx1153. PubMed DOI PMC
Varon R., Seemanova E., Chrzanowska K., Hnateyko O., Piekutowska-Abramczuk D., Krajewska-Walasek M., Sykut-Cegielska J., Sperling K., Reis A. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur. J. Hum. Genet. 2000;8:900–902. doi: 10.1038/sj.ejhg.5200554. PubMed DOI
Wieme G., Kral J., Rosseel T., Zemankova P., Parton B., Vocka M., Van Heetvelde M., Kleiblova P., Blaumeiser B., Soukupova J., et al. Prevalence of Germline Pathogenic Variants in Cancer Predisposing Genes in Czech and Belgian Pancreatic Cancer Patients. Cancers. 2021;13:4430. doi: 10.3390/cancers13174430. PubMed DOI PMC
Elkholi I.E., Foulkes W.D., Rivera B. MRN Complex and Cancer Risk: Old Bottles, New Wine. Clin. Cancer Res. 2021;27:5465–5471. doi: 10.1158/1078-0432.CCR-21-1509. PubMed DOI
Hu C., Hart S.N., Gnanaolivu R., Huang H., Lee K.Y., Na J., Gao C., Lilyquist J., Yadav S., Boddicker N.J., et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021;384:440–451. doi: 10.1056/NEJMoa2005936. PubMed DOI PMC
Rybicka M., Woziwodzka A., Sznarkowska A., Romanowski T., Stalke P., Dreczewski M., Verrier E.R., Baumert T.F., Bielawski K.P. Liver Cirrhosis in Chronic Hepatitis B Patients Is Associated with Genetic Variations in DNA Repair Pathway Genes. Cancers. 2020;12:3295. doi: 10.3390/cancers12113295. PubMed DOI PMC
Zhen Y., Xiao R., Chen X., Yuan C., Sun Y., Li J. A non-synonymous polymorphism in NBS1 is associated with progression from chronic hepatitis B virus infection to hepatocellular carcinoma in a Chinese population. Onco Targets Ther. 2018;11:563–569. doi: 10.2147/OTT.S153538. PubMed DOI PMC
Dumon Jones V., Frappart P.-O., Tong W.-M., Sajithlal G., Hulla W., Schmid G., Herceg Z., Digweed M., Wang Z.-Q. Nbn Heterozygosity Renders Mice Susceptible to Tumor Formation and Ionizing Radiation-Induced Tumorigenesis. Cancer Res. 2003;63:7263–7269. PubMed
Soukupova J., Zemankova P., Kleiblova P., Janatova M., Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application—Design and Optimization of the Targeted Sequencing Panel for the Identification of Cancer Susceptibility in High-risk Individuals from the Czech Republic. Klin. Onkol. 2016;29((Suppl. 1)):S46–S54. doi: 10.14735/amko2016S46. PubMed DOI
Li X., Wu Y., Suo P., Liu G., Li L., Zhang X., Chen S., Xu M., Song L. Identification of a novel germline frameshift mutation p.D300fs of PMS1 in a patient with hepatocellular carcinoma: A case report and literature review. Medicine. 2020;99:e19076. doi: 10.1097/MD.0000000000019076. PubMed DOI PMC
Chau C., van Doorn R., van Poppelen N.M., van der Stoep N., Mensenkamp A.R., Sijmons R.H., van Paassen B.W., van den Ouweland A.M.W., Naus N.C., van der Hout A.H., et al. Families with BAP1-Tumor Predisposition Syndrome in The Netherlands: Path to Identification and a Proposal for Genetic Screening Guidelines. Cancers. 2019;11:1114. doi: 10.3390/cancers11081114. PubMed DOI PMC
Caruso S., Calderaro J., Letouze E., Nault J.C., Couchy G., Boulai A., Luciani A., Zafrani E.S., Bioulac-Sage P., Seror O., et al. Germline and somatic DICER1 mutations in familial and sporadic liver tumors. J. Hepatol. 2017;66:734–742. doi: 10.1016/j.jhep.2016.12.010. PubMed DOI
Fu J., Wang T., Zhai X., Xiao X. Primary hepatocellular adenoma due to biallelic HNF1A mutations and its co-occurrence with MODY 3: Case-report and review of the literature. Endocrine. 2020;67:544–551. doi: 10.1007/s12020-019-02138-x. PubMed DOI PMC
Tovar E.A., Graveel C.R. MET in human cancer: Germline and somatic mutations. Ann. Transl. Med. 2017;5:205. doi: 10.21037/atm.2017.03.64. PubMed DOI PMC
Donati B., Pietrelli A., Pingitore P., Dongiovanni P., Caddeo A., Walker L., Baselli G., Pelusi S., Rosso C., Vanni E., et al. Telomerase reverse transcriptase germline mutations and hepatocellular carcinoma in patients with nonalcoholic fatty liver disease. Cancer Med. 2017;6:1930–1940. doi: 10.1002/cam4.1078. PubMed DOI PMC
Kuhlman J.J., Frier Q.J., Sumarriva D., Oberley M., Bolton D., Deveras R.A. Germline VHL Mutation Discovered in Association with EGFR-Positive Lung Cancer and Metachronous Hepatocellular Carcinoma: A Case Report. Case Rep. Oncol. 2021;14:1392–1398. doi: 10.1159/000518318. PubMed DOI PMC
Bian L., Meng Y., Zhang M., Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: Implications for cancer treatment. Mol. Cancer. 2019;18:169. doi: 10.1186/s12943-019-1100-5. PubMed DOI PMC
Abraham J.M., Mahan K., Mettler T., Dunitz J.M., Khoruts A. Case report of synchronous post-lung transplant colon cancers in the era of colorectal cancer screening recommendations in cystic fibrosis: Screening “too early” before it’s too late. BMC Gastroenterol. 2019;19:137. doi: 10.1186/s12876-019-1052-7. PubMed DOI PMC
Gozdowska J., Bieniasz M., Wszoła M., Kieszek R., Domagała P., Drozdowski J., Tomaszek A., Kwiatkowski A., Chmura A., Durlik M. Determining eligibility for and preparation to kidney transplantation of a patient with Lynch syndrome—A case report and literature review. Ann. Transplant. 2014;19:124–128. PubMed
Qudaih A.T., Al Ashour B.H., Naim A.K., Joudeh A.A. Kidney Transplant Recipient With Multiple Contemporaneous Malignancies Secondary to Muir-Torre Syndrome. Cureus. 2021;13:e16642. doi: 10.7759/cureus.16642. PubMed DOI PMC
Wassano N.S., Sergi F., Ferro G., Genzini T., D’Alpino Peixoto R. Rapid Disease Progression of Liver Metastases following Resection in a Liver-Transplanted Patient with Probable Lynch Syndrome—A Case Report and Review of the Literature. Case Rep. Oncol. 2017;10:244–251. doi: 10.1159/000460241. PubMed DOI PMC
Yang R.L., Kurian A.W., Winton L.M., Weill D., Patel K., Kingham K., Wapnir I.L. Addressing inherited predisposition for breast cancer in transplant recipients. J. Surg. Oncol. 2016;113:605–608. doi: 10.1002/jso.24193. PubMed DOI
Trepo E., Nahon P., Bontempi G., Valenti L., Falleti E., Nischalke H.D., Hamza S., Corradini S.G., Burza M.A., Guyot E., et al. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: Evidence from a meta-analysis of individual participant data. Hepatology. 2014;59:2170–2177. doi: 10.1002/hep.26767. PubMed DOI
Singal A.G., Manjunath H., Yopp A.C., Beg M.S., Marrero J.A., Gopal P., Waljee A.K. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: A meta-analysis. Am. J. Gastroenterol. 2014;109:325–334. doi: 10.1038/ajg.2013.476. PubMed DOI PMC
Pelusi S., Baselli G., Pietrelli A., Dongiovanni P., Donati B., McCain M.V., Meroni M., Fracanzani A.L., Romagnoli R., Petta S., et al. Rare Pathogenic Variants Predispose to Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Sci. Rep. 2019;9:3682. doi: 10.1038/s41598-019-39998-2. PubMed DOI PMC
Pirisi M., Toniutto P., Uzzau A., Fabris C., Avellini C., Scott C., Apollonio L., Beltrami C.A., Beltrami C., Bresadola F. Carriage of HFE mutations and outcome of surgical resection for hepatocellular carcinoma in cirrhotic patients. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2000;89:297–302. PubMed
Strnad P., Buch S., Hamesch K., Fischer J., Rosendahl J., Schmelz R., Brueckner S., Brosch M., Heimes C.V., Woditsch V., et al. Heterozygous carriage of the alpha1-antitrypsin Pi*Z variant increases the risk to develop liver cirrhosis. Gut. 2019;68:1099. doi: 10.1136/gutjnl-2018-316228. PubMed DOI