Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
Grantová podpora
I01 BX003690
BLRD VA - United States
R01 EB027143
NIBIB NIH HHS - United States
PubMed
31185250
PubMed Central
PMC6629511
DOI
10.1016/j.canlet.2019.114427
PII: S0304-3835(19)30349-0
Knihovny.cz E-zdroje
- Klíčová slova
- Chemotherapeutic and immunostimulant, Immunogenic cell death, Nanomedicine and biomaterials, Nanoparticle and microparticle, Pattern recognition receptor,
- MeSH
- adjuvancia imunologická aplikace a dávkování MeSH
- imunoterapie metody MeSH
- lidé MeSH
- nádory farmakoterapie imunologie terapie MeSH
- nanomedicína metody MeSH
- protinádorové vakcíny aplikace a dávkování imunologie MeSH
- T-lymfocyty účinky léků imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- protinádorové vakcíny MeSH
Patients with inadequate anti-cancer T cell responses experience limited benefit from immune checkpoint inhibitors and other immunotherapies that require T cells. Therefore, treatments that induce de novo anti-cancer T cell immunity are needed. One strategy - referred to as in situ vaccination - is to deliver chemotherapeutic or immunostimulatory drugs into tumors to promote cancer cell death and provide a stimulatory environment for priming T cells against antigens already present in the tumor. However, achieving sufficient drug concentrations in tumors without causing dose-limiting toxicities remains a major challenge. To address this challenge, nanomedicines based on nano-sized carriers ('nanocarriers') of chemotherapeutics and immunostimulants are being developed to improve drug accumulation in tumors following systemic (intravenous) administration. Herein, we present the rationale for using systemically administrable nanomedicines to induce anti-cancer T cell immunity via in situ vaccination and provide an overview of synthetic nanomedicines currently used clinically. We also describe general strategies for improving nanomedicine design to increase tumor uptake, including use of micelle- and star polymer-based nanocarriers. We conclude with perspectives for how nanomedicine properties, host factors and treatment combinations can be leveraged to maximize efficacy.
Zobrazit více v PubMed
Schumacher TN, Schreiber RD, Neoantigens in cancer immunotherapy, Science, 348 (2015) 69–74. PubMed
Allison JP, Immune Checkpoint Blockade in Cancer Therapy: The 2015 Lasker-DeBakey Clinical Medical Research Award, JAMA, 314 (2015) 1113–1114. PubMed
Chen DS, Mellman I, Oncology meets immunology: the cancer-immunity cycle, Immunity, 39 (2013) 1–10. PubMed
Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, Kriley IR, Rosenberg SA, T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer, N Engl J Med, 375 (2016) 2255–2262. PubMed PMC
Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR, Yang JC, Rosenberg SA, Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer, Science, 344 (2014) 641–645. PubMed PMC
Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R, Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, Lancet, 387 (2016) 1909–1920. PubMed PMC
Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison T, Wang L, Ribas A, Wolchok JD, Chan TA, Genetic basis for clinical response to CTLA-4 blockade in melanoma, N Engl J Med, 371 (2014) 2189–2199. PubMed PMC
Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM, Targeting neoantigens to augment antitumour immunity, Nat Rev Cancer, 17 (2017) 209–222. PubMed PMC
Melief C, Peptide-Based Therapeutic Cancer Vaccines, 2018.
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, Grunwitz C, Vormehr M, Husemann Y, Selmi A, Kuhn AN, Buck J, Derhovanessian E, Rae R, Attig S, Diekmann J, Jabulowsky RA, Heesch S, Hassel J, Langguth P, Grabbe S, Huber C, Tureci O, Sahin U, Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy, Nature, 534 (2016) 396–401. PubMed
Lin IY, Van TT, Smooker PM, Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery, Vaccines (Basel), 3 (2015) 940–972. PubMed PMC
Draper SJ, Heeney JL, Viruses as vaccine vectors for infectious diseases and cancer, Nature reviews. Microbiology, 8 (2010) 62–73. PubMed
Saxena M, Bhardwaj N, Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment, Trends Cancer, 4 (2018) 119–137. PubMed PMC
McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal- Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C, Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade, Science, 351 (2016) 1463–1469. PubMed PMC
Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, Gao J, Socci ND, Solit DB, Olshen AB, Schultz N, Taylor BS, Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity, Nat Biotechnol, 34 (2016) 155–163. PubMed PMC
Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, Gartner JJ, Zheng Z, Li YF, Ray S, Wunderlich JR, Somerville RP, Rosenberg SA, Immunogenicity of somatic mutations in human gastrointestinal cancers, Science, 350 (2015) 1387–1390. PubMed PMC
Hammerich L, Binder A, Brody JD, In situ vaccination: Cancer immunotherapy both personalized and off-the-shelf, Mol Oncol, 9 (2015) 1966–1981. PubMed PMC
Vanpouille-Box C, Pilones KA, Wennerberg E, Formenti SC, Demaria S, In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment, Vaccine, 33 (2015) 7415–7422. PubMed PMC
Smith M, Garcia-Martinez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Trial Watch: Toll-like receptor agonists in cancer immunotherapy, Oncoimmunology,7 (2018) e1526250. PubMed PMC
Fransen MF, Sluijter M, Morreau H, Arens R, Melief CJ, Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody, Clinical cancer research : an official journal of the American Association for Cancer Research, 17 (2011) 2270–2280. PubMed
Vom Berg J, Vrohlings M, Haller S, Haimovici A, Kulig P, Sledzinska A, Weller M, Becher B, Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection, J Exp Med, 210 (2013) 2803–2811. PubMed PMC
Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Crammer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH Jr., Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS, Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma, J Clin Oncol, 33 (2015) 2780–2788. PubMed
Redelman-Sidi G, Glickman MS, Bochner BH, The mechanism of action of BCG therapy for bladder cancer--a current perspective, Nat Rev Urol, 11 (2014) 153–162. PubMed
Iwasaki A, Medzhitov R, Toll-like receptor control of the adaptive immune responses, Nat Immunol, 5 (2004) 987–995. PubMed
Coffman RL, Sher A, Seder RA, Vaccine adjuvants: putting innate immunity to work, Immunity, 33 (2010) 492–503. PubMed PMC
A.G. A, S.K. Tyring, Rosen T, Beyond a decade of 5% imiquimod topical therapy, Journal of drugs in dermatology : JDD, 8 (2009) 467–474. PubMed
Schon M, Schon MP, The antitumoral mode of action of imiquimod and other imidazoquinolines, Curr Med Chem, 14 (2007) 681–687. PubMed
Lampkin BC, Levine AS, Levy H, Krivit W, Hammond D, Phase II trial of poly(I,C)-LC, an interferon inducer, in the treatment of children with acute leukemia and neuroblastoma: a report from the Children’s Cancer Study Group, Journal of biological response modifiers, 4 (1985) 531–537. PubMed
Witt PL, Ritch PS, Reding D, McAuliffe TL, Westrick L, Grossberg SE, Borden EC, Phase I trial of an oral immunomodulator and interferon inducer in cancer patients, Cancer Res, 53 (1993) 5176–5180. PubMed
Dummer R, Hauschild A, Becker JC, Grob JJ, Schadendorf D, Tebbs V, Skalsky J, Kaehler KC, Moosbauer S, Clark R, Meng TC, Urosevic M, An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma, Clinical cancer research : an official journal of the American Association for Cancer Research, 14 (2008) 856–864. PubMed
Singh M, Khong H, Dai Z, Huang XF, Wargo JA, Cooper ZA, Vasilakos JP, Hwu P, Overwijk WW, Effective innate and adaptive antimelanoma immunity through localized TLR7/8 activation, J Immunol, 193 (2014) 4722–4731. PubMed PMC
Fakhari A, Nugent S, Elvecrog J, Vasilakos J, Corcoran M, Tilahun A, Siebenaler K, Sun J, Subramony JA, Schwarz A, Thermosensitive Gel-Based Formulation for Intratumoral Delivery of Toll-Like Receptor 7/8 Dual Agonist, MEDI9197, J Pharm Sci, 106 (2017) 2037–2045. PubMed
Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, Kim YH, Hoppe RT, Knox SJ, Shin LK, Wapnir I, Tibshirani RJ, Levy R, In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study, J Clin Oncol, 28 (2010) 4324–4332. PubMed PMC
Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, Coffman RL, Guiducci C, Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells, Proc Natl Acad Sci U S A, 113 (2016) E7240–E7249. PubMed PMC
Sagiv-Barfi I, Czerwinski DK, Levy S, Alam IS, Mayer AT, Gambhir SS, Levy R, Eradication of spontaneous malignancy by local immunotherapy, Sci Transl Med, 10 (2018). PubMed PMC
Kwong B, Liu H, Irvine DJ, Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy, Biomaterials, 32 (2011) 5134–5147. PubMed PMC
Ribas A, Medina T, Kummar S, Amin A, Kalbasi A, Drabick JJ, Barve M, Daniels GA, Wong DJ, Schmidt EV, Candia AF, Coffman RL, Leung ACF, Janssen RS, SD-101 in Combination with Pembrolizumab in Advanced Melanoma: Results of a Phase Ib, Multicenter Study, Cancer Discov, 8 (2018) 1250–1257. PubMed PMC
Sagiv-Barfi I, Lu H, Hewitt J, Hsu FJ, Meulen J.t., Levy R, Intratumoral Injection of TLR4 Agonist (G100) Leads to Tumor Regression of A20 Lymphoma and Induces Abscopal Responses, Blood, 126 (2015) 820.
Bhatia S, Miller NJ, Lu H, Longino NV, Ibrani D, Shinohara MM, Byrd DR, Parvathaneni U, Kulikauskas R, Ter Meulen J, Hsu FJ, Koelle DM, Nghiem P, Intratumoral G100, a TLR4 Agonist, Induces Antitumor Immune Responses and Tumor Regression in Patients with Merkel Cell Carcinoma, Clinical cancer research : an official journal of the American Association for Cancer Research, 25 (2019) 1185–1195. PubMed PMC
Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo SR, Lemmens E, Banda T, Leong JJ, Metchette K, Dubensky TW Jr., Gajewski TF, Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity, Cell Rep, 11 (2015) 1018–1030. PubMed PMC
Francica BJ, Ghasemzadeh A, Desbien AL, Theodros D, Sivick KE, Reiner GL, Hix Glickman L, Marciscano AE, Sharabi AB, Leong ML, McWhirter SM, Dubensky TW Jr., Pardoll DM, Drake CG, TNFalpha and Radioresistant Stromal Cells Are Essential for Therapeutic Efficacy of Cyclic Dinucleotide STING Agonists in Nonimmunogenic Tumors, Cancer Immunol Res, 6 (2018) 422–433. PubMed PMC
Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY, Tran JL, Moore P, Lehmann S, Eberl HC, Muelbaier M, Schneck JL, Clemens J, Adam M, Mehlmann J, Romano J, Morales A, Kang J, Leister L, Graybill TL, Charnley AK, Ye G, Nevins N, Behnia K, Wolf AI, Kasparcova V, Nurse K, Wang L, Li Y, Klein M, Hopson CB, Guss J, Bantscheff M, Bergamini G, Reilly MA, Lian Y, Duffy KJ, Adams J, Foley KP, Gough PJ, Marquis RW, Smothers J, Hoos A, Bertin J, Design of amidobenzimidazole STING receptor agonists with systemic activity, Nature, (2018). PubMed
Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, Porembka MR, Lea J, Frankel AE, Fu YX, Chen ZJ, Gao J, A STING-activating nanovaccine for cancer immunotherapy, Nat Nanotechnol, 12 (2017) 648–654. PubMed PMC
Menard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F, Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity, Cancer Immunol Immunother, 57 (2008) 1579–1587. PubMed PMC
Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G, Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents, Cancer Cell, 28 (2015) 690–714. PubMed
Wang YJ, Fletcher R, Yu J, Zhang L, Immunogenic effects of chemotherapy-induced tumor cell death, Genes Dis, 5 (2018) 194–203. PubMed PMC
Mattarollo SR, Loi S, Duret H, Ma Y, Zitvogel L, Smyth MJ, Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors, Cancer Res, 71 (2011) 4809–4820. PubMed
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G, Calreticulin exposure dictates the immunogenicity of cancer cell death, Nat Med, 13 (2007) 54–61. PubMed
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G, Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance, Immunity, 39 (2013) 74–88. PubMed
Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H, Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide, Blood, 105 (2005) 2862–2868. PubMed
Maeda K, Hazama S, Tokuno K, Kan S, Maeda Y, Watanabe Y, Kamei R, Shindo Y, Maeda N, Yoshimura K, Yoshino S, Oka M, Impact of chemotherapy for colorectal cancer on regulatory T-cells and tumor immunity, Anticancer Res, 31 (2011) 4569–4574. PubMed
Eriksson E, Wenthe J, Irenaeus S, Loskog A, Ullenhag G, Gemcitabine reduces MDSCs, tregs and TGFbeta-1 while restoring the teff/treg ratio in patients with pancreatic cancer, J Transl Med, 14 (2016) 282. PubMed PMC
Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V, Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression, Front Immunol, 9 (2018) 398. PubMed PMC
Newell DR, Pharmacokinetic determinants of the activity and toxicity of antitumour agents, Cancer Surv, 8 (1989) 557–603. PubMed
Kintzel PE, Dorr RT, Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function, Cancer Treat Rev, 21 (1995) 33–64. PubMed
Harrison LI, Astry C, Kumar S, Yunis C, Pharmacokinetics of 852A, an imidazoquinoline Toll-like receptor 7-specific agonist, following intravenous, subcutaneous, and oral administrations in humans, J Clin Pharmacol, 47 (2007) 962–969. PubMed
Schmitt A, Gladieff L, Laffont CM, Evrard A, Boyer JC, Lansiaux A, Bobin-Dubigeon C, Etienne-Grimaldi MC, Boisdron-Celle M, Mousseau M, Pinguet F, Floquet A, Billaud EM, Durdux C, Le Guellec C, Mazieres J, Lafont T, Ollivier F, Concordet D, Chatelut E, Factors for hematopoietic toxicity of carboplatin: refining the targeting of carboplatin systemic exposure, J Clin Oncol, 28 (2010) 4568–4574. PubMed
Milling L, Zhang Y, Irvine DJ, Delivering safer immunotherapies for cancer, Adv Drug Deliv Rev, 114 (2017) 79–101. PubMed PMC
Shi J, Kantoff PW, Wooster R, Farokhzad OC, Cancer nanomedicine: progress, challenges and opportunities, Nat Rev Cancer, 17 (2017) 20–37. PubMed PMC
Aznar MA, Tinari N, Rullan AJ, Sanchez-Paulete AR, Rodriguez-Ruiz ME, Melero I, Intratumoral Delivery of Immunotherapy-Act Locally, Think Globally, J Immunol, 198 (2017) 31–39. PubMed
Poursaid A, Jensen MM, Huo E, Ghandehari H, Polymeric materials for embolic and chemoembolic applications, J Control Release, 240 (2016) 414–433. PubMed PMC
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R, Nanocarriers as an emerging platform for cancer therapy, Nat Nanotechnol, 2 (2007) 751–760. PubMed
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K, Liposomes and polymersomes: a comparative review towards cell mimicking, Chem Soc Rev, 47 (2018) 8572–8610. PubMed
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA, Polymers for drug delivery systems, Annu Rev Chem Biomol Eng, 1 (2010) 149–173. PubMed PMC
Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral JP, Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis, Adv Drug Deliv Rev, 136–137 (2018) 73–81. PubMed
Samer B, Mohamad H, Stefano P, Pietro R, Giuseppe C, Giuseppe T, Flavio R, Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic, Current Medicinal Chemistry, 25 (2018) 4269–4303. PubMed
Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B, Biological interactions of carbon-based nanomaterials: From coronation to degradation, Nanomedicine, 12 (2016) 333–351. PubMed PMC
Kratz F, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles, J Control Release, 132 (2008) 171–183. PubMed
Beck A, Goetsch L, Dumontet C, Corvaia N, Strategies and challenges for the next generation of antibody-drug conjugates, Nat Rev Drug Discov, 16 (2017) 315–337. PubMed
Rohovie MJ, Nagasawa M, Swartz JR, Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery, Bioeng Transl Med, 2 (2017) 43–57. PubMed PMC
Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV, Renal clearance of quantum dots, Nat Biotechnol, 25 (2007) 1165–1170. PubMed PMC
Sevick EM, Jain RK, Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure, Cancer Res, 49 (1989) 3506–3512. PubMed
Folkman J, Angiogenesis in cancer, vascular, rheumatoid and other disease, Nat Med, 1 (1995) 27–31. PubMed
Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM, Openings between defective endothelial cells explain tumor vessel leakiness, Am J Pathol, 156 (2000) 1363–1380. PubMed PMC
Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK, Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation, Cancer Res, 60 (2000) 4324–4327. PubMed
Matsumura Y, Maeda H, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res, 46 (1986) 6387–6392. PubMed
Greish K, Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines, J Drug Target, 15 (2007) 457–464. PubMed
Caster JM, Patel AN, Zhang T, Wang A, Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials, Wiley Interdiscip Rev Nanomed Nanobiotechnol, 9 (2017). PubMed
Alphandery E, Grand-Dewyse P, Lefevre R, Mandawala C, Durand-Dubief M, Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects, Expert Rev Anticancer Ther, 15 (2015) 1233–1255. PubMed
Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST, Challenges and strategies in anti-cancer nanomedicine development: An industry perspective, Adv Drug Deliv Rev, 108 (2017) 25–38. PubMed
Northfelt DW, Martin FJ, Working P, Volberding PA, Russell J, Newman M, Amantea MA, Kaplan LD, Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS- related Kaposi’s sarcoma, J Clin Pharmacol, 36 (1996) 55–63. PubMed
Barenholz Y, Doxil(R)--the first FDA-approved nano-drug: lessons learned, J Control Release, 160 (2012) 117–134. PubMed
Talati C, Lancet JE, CPX-351: changing the landscape of treatment for patients with secondary acute myeloid leukemia, Future Oncol, 14 (2018) 1147–1154. PubMed
O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C, C.B.C.S. Group, Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer, Ann Oncol, 15 (2004) 440–449. PubMed
Seetharamu N, Kim E, Hochster H, Martin F, Muggia F, Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer, Anticancer Res, 30 (2010) 541–545. PubMed
Ekladious I, Colson YL, Grinstaff MW, Polymer-drug conjugate therapeutics: advances, insights and prospects, Nature Reviews Drug Discovery, (2018). PubMed
Langer CJ, O’Byrne KJ, Socinski MA, Mikhailov SM, Lesniewski-Kmak K, Smakal M, Ciuleanu TE, Orlov SV, Dediu M, Heigener D, Eisenfeld AJ, Sandalic L, Oldham FB, Singer JW, Ross HJ, Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer, J Thorac Oncol, 3 (2008) 623–630. PubMed
Verschraegen CF, Skubitz K, Daud A, Kudelka AP, Rabinowitz I, Allievi C, Eisenfeld A, Singer JW, Oldham FB, A phase I and pharmacokinetic study of paclitaxel poliglumex and cisplatin in patients with advanced solid tumors, Cancer Chemother Pharmacol, 63 (2009) 903–910. PubMed
Rademaker-Lakhai JM, Terret C, Howell SB, Baud CM, De Boer RF, Pluim D, Beijnen JH, Schellens JH, Droz JP, A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors, Clinical cancer research : an official journal of the American Association for Cancer Research, 10 (2004) 3386–3395. PubMed
Seymour LW, Ferry DR, Kerr DJ, Rea D, Whitlock M, Poyner R, Boivin C, Hesslewood S, Twelves C, Blackie R, Schatzlein A, Jodrell D, Bissett D, Calvert H, Lind M, Robbins A, Burtles S, Duncan R, Cassidy J, Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer, Int J Oncol, 34 (2009) 1629–1636. PubMed
Svenson S, Wolfgang M, Hwang J, Ryan J, Eliasof S, Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101, J Control Release, 153 (2011) 49–55. PubMed
Duncan R, Vicent MJ, Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities, Adv Drug Deliv Rev, 62 (2010) 272–282. PubMed
Voss MH, Hussain A, Vogelzang N, Lee JL, Keam B, Rha SY, Vaishampayan U, Harris WB, Richey S, Randall JM, Shaffer D, Cohn A, Crowell T, Li J, Senderowicz A, Stone E, Figlin R, Motzer RJ, Haas NB, Hutson T, A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma, Ann Oncol, 28 (2017) 2754–2760. PubMed
Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J, Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer, Breast Cancer Res Treat, 108 (2008) 241–250. PubMed
Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T, NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel, Br J Cancer, 92 (2005) 1240–1246. PubMed PMC
Cabral H, Nishiyama N, Kataoka K, Optimization of (1,2-diamino- cyclohexane)platinum(M)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity, J Control Release, 121 (2007) 146–155. PubMed
Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, Park JW, Jeong SH, Cho EK, A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer, Cancer Chemother Pharmacol, 74 (2014) 277–282. PubMed PMC
Danhier F, To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?, J Control Release, 244 (2016) 108–121. PubMed
Gammon JM, Dold NM, Jewell CM, Improving the clinical impact of biomaterials in cancer immunotherapy, Oncotarget, 7 (2016) 15421–15443. PubMed PMC
Nakamura Y, Mochida A, Choyke PL, Kobayashi H, Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?, Bioconjug Chem, 27 (2016) 2225–2238. PubMed PMC
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW, Analysis of nanoparticle delivery to tumours, Nature Reviews Materials, 1 (2016) 16014.
Alexis F, Pridgen E, Molnar LK, Farokhzad OC, Factors affecting the clearance and biodistribution of polymeric nanoparticles, Mol Pharm, 5 (2008) 505–515. PubMed PMC
Ernsting MJ, Murakami M, Roy A, Li SD, Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles, J Control Release, 172 (2013) 782–794. PubMed PMC
Hua S, de Matos MBC, Metselaar JM, Storm G, Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization, Front Pharmacol, 9 (2018) 790. PubMed PMC
Tsoi KM, MacParland SA, Ma XZ, Spetzler VN, Echeverri J, Ouyang B, Fadel SM, Sykes EA, Goldaracena N, Kaths JM, Conneely JB, Alman BA, Selzner M, Ostrowski MA, Adeyi OA, Zilman A, McGilvray ID, Chan WC, Mechanism of hard-nanomaterial clearance by the liver, Nat Mater, 15 (2016) 1212–1221. PubMed PMC
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW, Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination, J Control Release, 240 (2016) 332–348. PubMed
Tavares AJ, Poon W, Zhang YN, Dai Q, Besla R, Ding D, Ouyang B, Li A, Chen J, Zheng G, Robbins C, Chan WCW, Effect of removing Kupffer cells on nanoparticle tumor delivery, Proc Natl Acad Sci U S A, 114 (2017) E10871–E10880. PubMed PMC
Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK, Pathology: cancer cells compress intratumour vessels, Nature, 427 (2004) 695. PubMed
Harrington KJ, Rowlinson-Busza G, Syrigos KN, Abra RM, Uster PS, Peters AM, Stewart JS, Influence of tumour size on uptake of(111)ln-DTPA-labelled pegylated liposomes in a human tumour xenograft model, Br J Cancer, 83 (2000) 684–688. PubMed PMC
Yokoi K, Kojic M, Milosevic M, Tanei T, Ferrari M, Ziemys A, Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment, Cancer Res, 74 (2014) 4239–4246. PubMed PMC
Miao L, Huang L, Exploring the tumor microenvironment with nanoparticles, Cancer Treat Res, 166 (2015) 193–226. PubMed PMC
Kobayashi H, Brechbiel MW, Nano-sized MRI contrast agents with dendrimer cores, Adv Drug Deliv Rev, 57 (2005) 2271–2286. PubMed
Seymour LW, Duncan R, Strohalm J, Kopecek J, Effect of molecular weight (Mw) of N- (2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats, J Biomed Mater Res, 21 (1987) 1341–1358. PubMed
Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A, Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers, J Natl Cancer Inst, 98 (2006) 335–344. PubMed
Popovic Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, Insin N, Nocera DG, Fukumura D, Jain RK, Bawendi MG, A nanoparticle size series for in vivo fluorescence imaging, Angew Chem Int Ed Engl, 49 (2010) 8649–8652. PubMed PMC
Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K, Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size, Nat Nanotechnol, 6 (2011) 815–823. PubMed
Mei L, Rao J, Liu Y, Li M, Zhang Z, He Q, Effective treatment of the primary tumor and lymph node metastasis by polymeric micelles with variable particle sizes, J Control Release, 292 (2018) 67–77. PubMed
Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y, Jain RK, Torchilin VP, Munn L, Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors, Cancer Res, 62 (2002) 6831–6836. PubMed
Krasnici S, Werner A, Eichhorn ME, Schmitt-Sody M, Pahernik SA, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K, Dellian M, Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels, Int J Cancer, 105 (2003) 561–567. PubMed
He C, Hu Y, Yin L, Tang C, Yin C, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials, 31 (2010) 3657–3666. PubMed
Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, Bhattacharya R, Robertson JD, Rotello VM, Reid JM, Mukherjee P, Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles, PLoS One, 6 (2011) e24374. PubMed PMC
Wang H-X, Zuo Z-Q, Du J-Z, Wang Y-C, Sun R, Cao Z-T, Ye X-D, Wang J-L, Leong KW, Wang J, Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines, Nano Today, 11 (2016) 133–144.
Chiu YC, Gammon JM, Andorko JI, Tostanoski LH, Jewell CM, Modular Vaccine Design Using Carrier-Free Capsules Assembled from Polyionic Immune Signals, ACS Biomater Sci Eng, 1 (2015) 1200–1205. PubMed PMC
Tostanoski LH, Jewell CM, Engineering self-assembled materials to study and direct immune function, Adv Drug Deliv Rev, 114 (2017) 60–78. PubMed PMC
Zeng Q, Zhang P, Zeng X, Tostanoski LH, Jewell CM, Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function, Biomater Sci, 6 (2017) 115–124. PubMed
Akiyama Y, Mori T, Katayama Y, Niidome T, The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice, J Control Release, 139 (2009) 81–84. PubMed
Ishihara T, Maeda T, Sakamoto H, Takasaki N, Shigyo M, Ishida T, Kiwada H, Mizushima Y, Mizushima T, Evasion of the accelerated blood clearance phenomenon by coating of nanoparticles with various hydrophilic polymers, Biomacromolecules, 11 (2010) 2700–2706. PubMed
Walkey CD, Olsen JB, Guo H, Emili A, Chan WC, Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake, J Am Chem Soc, 134 (2012) 2139–2147. PubMed
Shimizu T, Abu Lila AS, Fujita R, Awata M, Kawanishi M, Hashimoto Y, Okuhira K, Ishima Y, Ishida T, A hydroxyl PEG version of PEGylated liposomes and its impact on anti-PEG IgM induction and on the accelerated clearance of PEGylated liposomes, Eur J Pharm Biopharm, 127 (2018) 142–149. PubMed
Hsu HJ, Han Y, Cheong M, Kral P, Hong S, Dendritic PEG outer shells enhance serum stability of polymeric micelles, Nanomedicine, 14 (2018) 1879–1889. PubMed PMC
Durymanov MO, Rosenkranz AA, Sobolev AS, Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines, Theranostics, 5 (2015) 1007–1020. PubMed PMC
Lu Y, Yue Z, Xie J, Wang W, Zhu H, Zhang E, Cao Z, Micelles with ultralow critical micelle concentration as carriers for drug delivery, Nature Biomedical Engineering, 2 (2018) 318–325. PubMed PMC
Shamay Y, Shah J, Isik M, Mizrachi A, Leibold J, Tschaharganeh DF, Roxbury D, Budhathoki-Uprety J, Nawaly K, Sugarman JL, Baut E, Neiman MR, Dacek M, Ganesh KS, Johnson DC, Sridharan R, Chu KL, Rajasekhar VK, Lowe SW, Chodera JD, Heller DA, Quantitative self-assembly prediction yields targeted nanomedicines, Nat Mater, 17 (2018) 361–368. PubMed PMC
Hu X, Jing X, Biodegradable amphiphilic polymer-drug conjugate micelles, Expert Opin Drug Deliv, 6 (2009) 1079–1090. PubMed
Chytil P, Sirova M, Kudlacova J, Rihova B, Ulbrich K, Etrych T, Bloodstream Stability Predetermines the Antitumor Efficacy of Micellar Polymer-Doxorubicin Drug Conjugates with pH-Triggered Drug Release, Mol Pharm, 15 (2018) 3654–3663. PubMed
Bharadwaj G, Nhan V, Yang S, Li X, Narayanan A, Macarenco AC, Shi Y, Yang D, Vieira LS, Xiao W, Li Y, Lam KS, Cholic acid-based novel micellar nanoplatform for delivering FDA-approved taxanes, Nanomedicine (Lond), 12 (2017) 1153–1164. PubMed PMC
Laga R, Janouskova O, Ulbrich K, Pola R, Blazkova J, Filippov SK, Etrych T, Pechar M, Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics, Biomacromolecules, 16 (2015) 2493–2505. PubMed
Bugno J, Hsu HJ, Pearson RM, Noh H, Hong S, Size and Surface Charge of Engineered Poly(amidoamine) Dendrimers Modulate Tumor Accumulation and Penetration: A Model Study Using Multicellular Tumor Spheroids, Mol Pharm, 13 (2016) 2155–2163. PubMed
Palmerston Mendes L, Pan J, Torchilin VP, Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy, Molecules, 22 (2017). PubMed PMC
Zhang M, Zhu J, Zheng Y, Guo R, Wang S, Mignani S, Caminade AM, Majoral JP, Shi X, Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy, Pharmaceutics, 10 (2018). PubMed PMC
Ren JM, McKenzie TG, Fu Q, Wong EH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG, Star Polymers, Chem Rev, 116 (2016) 6743–6836. PubMed
Leong NJ, Mehta D, McLeod VM, Kelly BD, Pathak R, Owen DJ, Porter CJH, Kaminskas LM, Doxorubicin Conjugation and Drug Linker Chemistry Alter the Intravenous and Pulmonary Pharmacokinetics of a PEGylated Generation 4 Polylysine Dendrimer in Rats, J Pharm Sci, 107 (2018) 2509–2513. PubMed
Mehta D, Leong N, McLeod VM, Kelly BD, Pathak R, Owen DJ, Porter CJH, Kaminskas LM, Reducing Dendrimer Generation and PEG Chain Length Increases Drug Release and Promotes Anticancer Activity of PEGylated Polylysine Dendrimers Conjugated with Doxorubicin via a Cathepsin-Cleavable Peptide Linker, Mol Pharm, 15 (2018) 4568–4576. PubMed
Etrych T, Strohalm J, Chytil P, Rihova B, Ulbrich K, Novel star HPMA-based polymer conjugates for passive targeting to solid tumors, J Drug Target, 19 (2011) 874–889. PubMed
Kostkova H, Schindler L, Kotrchova L, Kovar M, Sirova M, Kostka L, Etrych T, Star Polymer-Drug Conjugates with pH-Controlled Drug Release and Carrier Degradation, Journal of Nanomaterials, 2017 (2017) 10.
Nakamura H, Koziolova E, Etrych T, Chytil P, Fang J, Ulbrich K, Maeda H, Comparison between linear and star-like HPMA conjugated pirarubicin (THP) in pharmacokinetics and antitumor activity in tumor bearing mice, Eur J Pharm Biopharm, 90 (2015) 90–96. PubMed
Rihova B, Kovar M, Immunogenicity and immunomodulatory properties of HPMA-based polymers, Adv Drug Deliv Rev, 62 (2010) 184–191. PubMed
Mastria EM, Cai LY, Kan MJ, Li X, Schaal JL, Fiering S, Gunn MD, Dewhirst MW, Nair SK, Chilkoti A, Nanoparticle formulation improves doxorubicin efficacy by enhancing host antitumor immunity, J Control Release, 269 (2018) 364–373. PubMed PMC
Yoo E, Salyer ACD, Brush MJH, Li Y, Trautman KL, Shukla NM, De Beuckelaer A, Lienenklaus S, Deswarte K, Lambrecht BN, De Geest BG, David SA, Hyaluronic Acid Conjugates of TLR7/8 Agonists for Targeted Delivery to Secondary Lymphoid Tissue, Bioconjug Chem, 29 (2018) 2741–2754. PubMed
Sevimli S, Knight FC, Gilchuk P, Joyce S, Wilson JT, Fatty Acid-Mimetic Micelles for Dual Delivery of Antigens and Imidazoquinoline Adjuvants, ACS Biomaterials Science & Engineering, 3 (2017) 179–194. PubMed PMC
Moynihan KD, Opel CF, Szeto GL, Tzeng A, Zhu EF, Engreitz JM, Williams RT, Rakhra K, Zhang MH, Rothschilds AM, Kumari S, Kelly RL, Kwan BH, Abraham W, Hu K, Mehta NK, Kauke MJ, Suh H, Cochran JR, Lauffenburger DA, Wittrup KD, Irvine DJ, Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses, Nat Med, 22 (2016) 1402–1410. PubMed PMC
Kuai R, Yuan W, Son S, Nam J, Xu Y, Fan Y, Schwendeman A, Moon JJ, Elimination of established tumors with nanodisc-based combination chemoimmunotherapy, Sci Adv, 4 (2018) eaao1736. PubMed PMC
Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ, Designer vaccine nanodiscs for personalized cancer immunotherapy, Nat Mater, 16 (2017) 489–496. PubMed PMC
Nakamura H, Etrych T, Chytil P, Ohkubo M, Fang J, Ulbrich K, Maeda H, Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage, J Control Release, 174 (2014) 81–87. PubMed
Ruan S, Cao X, Cun X, Hu G, Zhou Y, Zhang Y, Lu L, He Q, Gao H, Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release, Biomaterials, 60 (2015) 100–110. PubMed
Yang S, Wang Y, Ren Z, Chen M, Chen W, Zhang X, Stepwise pH/reduction-responsive polymeric conjugates for enhanced drug delivery to tumor, Mater Sci Eng C Mater Biol Appl, 82 (2018) 234–243. PubMed
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL, Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities, J Control Release, 277 (2018) 1–13. PubMed
Stylianopoulos T, Munn LL, Jain RK, Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside, Trends Cancer, 4 (2018) 292–319. PubMed PMC
Nagamitsu A, Greish K, Maeda H, Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors, Jpn J Clin Oncol, 39 (2009) 756–766. PubMed
Seki T, Fang J, Maeda H, Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application, Cancer Sci, 100 (2009) 2426–2430. PubMed PMC
Seki T, Carroll F, Illingworth S, Green N, Cawood R, Bachtarzi H, Subr V, Fisher KD, Seymour LW, Tumour necrosis factor-alpha increases extravasation of virus particles into tumour tissue by activating the Rho A/Rho kinase pathway, J Control Release, 156 (2011) 381–389. PubMed
Fransen MF, Arens R, Melief CJ, Local targets for immune therapy to cancer: tumor draining lymph nodes and tumor microenvironment, Int J Cancer, 132 (2013) 1971–1976. PubMed
Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA, Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response, Biomaterials, 35 (2014) 814–824. PubMed
Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, Mellows T, Samaniego-Castruita D, Singh D, Seumois G, Alzetani A, Woo E, Friedmann PS, King EV, Thomas GJ, Sanchez-Elsner T, Vijayanand P, Ottensmeier CH, Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer, Nat Immunol, 18 (2017) 940–950. PubMed PMC
Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, Seja E, Kivork C, Siebert J, Kaplan-Lefko P, Wang X, Chmielowski B, Glaspy JA, Tumeh PC, Chodon T, Pe’er D, Comin-Anduix B, PD-1 Blockade Expands Intratumoral Memory T Cells, Cancer Immunol Res, 4 (2016) 194–203. PubMed PMC
Gosselin EA, Eppler HB, Bromberg JS, Jewell CM, Designing natural and synthetic immune tissues, Nat Mater, 17 (2018) 484–498. PubMed PMC
Gammon JM, Gosselin EA, Tostanoski LH, Chiu YC, Zeng X, Zeng Q, Jewell CM, Low- dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells, J Control Release, 263 (2017) 151–161. PubMed PMC
Andorko JI, Tostanoski LH, Solano E, Mukhamedova M, Jewell CM, Intra-lymph node injection of biodegradable polymer particles, J Vis Exp, (2014) e50984. PubMed PMC
O’Neill NA, Eppler HB, Jewell CM, Bromberg JS, Harnessing the lymph node microenvironment, Curr Opin Organ Transplant, 23 (2018) 73–82. PubMed PMC
Klebanoff CA, Gattinoni L, Palmer DC, Muranski P, Ji Y, Hinrichs CS, Borman ZA, Kerkar SP, Scott CD, Finkelstein SE, Rosenberg SA, Restifo NP, Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice, Clinical cancer research : an official journal of theAmerican Association for Cancer Research, 17 (2011) 5343–5352. PubMed PMC
Jeanbart L, Kourtis IC, van der Vlies AJ, Swartz MA, Hubbell JA, 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice, Cancer Immunol Immunother, 64 (2015) 1033–1046. PubMed PMC
Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R, TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour- associated macrophages to enhance cancer immunotherapy, Nature Biomedical Engineering, 2 (2018) 578–588. PubMed PMC
Lynn GM, Laga R, Darrah PA, Ishizuka AS, Balaci AJ, Dulcey AE, Pechar M, Pola R, Gerner MY, Yamamoto A, Buechler CR, Quinn KM, Smelkinson MG, Vanek O, Cawood R, Hills T, Vasalatiy O, Kastenmuller K, Francica JR, Stutts L, Tom JK, Ryu KA, Esser-Kahn AP, Etrych T, Fisher KD, Seymour LW, Seder RA, In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity, Nat Biotechnol, 33 (2015) 1201–1210. PubMed PMC
Zhu G, Lynn GM, Jacobson O, Chen K, Liu Y, Zhang H, Ma Y, Zhang F, Tian R, Ni Q, Cheng S, Wang Z, Lu N, Yung BC, Wang Z, Lang L, Fu X, Jin A, Weiss ID, Vishwasrao H, Niu G, Shroff H, Klinman DM, Seder RA, Chen X, Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy, Nat Commun, 8 (2017) 1954. PubMed PMC
Bookstaver ML, Tsai SJ, Bromberg JS, Jewell CM, Improving Vaccine and Immunotherapy Design Using Biomaterials, Trends Immunol, 39 (2018) 135–150. PubMed PMC
Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, Melo MB, Mueller S, Irvine DJ, Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants, J Clin Invest, 125 (2015) 2532–2546. PubMed PMC
Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C, Irvine DJ, Structure-based programming of lymph-node targeting in molecular vaccines, Nature, 507 (2014) 519–522. PubMed PMC
Lynn GM, Chytil P, Francica JR, Lagova A, Kueberuwa G, Ishizuka AS, Zaidi N, Ramirez-Valdez RA, Blobel NJ, Baharom F, Leal J, Wang AQ, Gerner MY, Etrych T, Ulbrich K, Seymour LW, Seder RA, Laga R, Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction, Biomacromolecules, 20 (2019) 854–870. PubMed
Landreneau JP, Shurin MR, Agassandian MV, Keskinov AA, Ma Y, Shurin GV, Immunological Mechanisms of Low and Ultra-Low Dose Cancer Chemotherapy, Cancer Microenviron, 8 (2015) 57–64. PubMed PMC
Sivick KE, Desbien AL, Glickman LH, Reiner GL, Corrales L, Surh NH, Hudson TE, Vu UT, Francica BJ, Banda T, Katibah GE, Kanne DB, Leong JJ, Metchette K, Bruml JR, Ndubaku CO, McKenna JM, Feng Y, Zheng L, Bender SL, Cho CY, Leong ML, van Elsas A, Dubensky TW Jr., McWhirter SM, Magnitude of Therapeutic STING Activation Determines CD8(+) T Cell-Mediated Anti-tumor Immunity, Cell Rep, 25 (2018) 3074–3085 e3075. PubMed