Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P50 CA062924
NCI NIH HHS - United States
29106
Cancer Research UK - United Kingdom
R01 EB027143
NIBIB NIH HHS - United States
Z01 AI005016
Intramural NIH HHS - United States
T32 GM007171
NIGMS NIH HHS - United States
PubMed
31932728
PubMed Central
PMC7065950
DOI
10.1038/s41587-019-0390-x
PII: 10.1038/s41587-019-0390-x
Knihovny.cz E-zdroje
- MeSH
- adjuvancia imunologická chemie MeSH
- antigeny nádorové imunologie MeSH
- CD8-pozitivní T-lymfocyty metabolismus MeSH
- individualizovaná medicína MeSH
- melanom experimentální farmakoterapie imunologie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanočástice MeSH
- primáti MeSH
- protinádorové vakcíny aplikace a dávkování imunologie MeSH
- toll-like receptor 7 imunologie MeSH
- toll-like receptor 8 imunologie MeSH
- vakcinace MeSH
- vakcíny konjugované MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- antigeny nádorové MeSH
- protinádorové vakcíny MeSH
- toll-like receptor 7 MeSH
- toll-like receptor 8 MeSH
- vakcíny konjugované MeSH
Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.
Avidea Technologies Inc Baltimore MD USA
Biological Imaging Section Research Technologies Branch NIAID NIH Bethesda MD USA
Centre d'Investigation Clinique Biothérapie Institut Curie Paris France
Department of Neurosurgery Brigham and Women's Hospital Harvard University Boston MA USA
Department of Oncology University of Oxford Oxford UK
Fischell Department of Bioengineering University of Maryland College Park MD USA
Herbert Irving Comprehensive Cancer Center Columbia University Medical Center New York NY USA
Institut Curie PSL Research University Paris France
Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore MD USA
Zobrazit více v PubMed
Lennerz V et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci U S A 102, 16013–16018, doi:10.1073/pnas.0500090102 (2005). PubMed DOI PMC
Tran E et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645, doi:10.1126/science.1251102 (2014). PubMed DOI PMC
Tran E et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N Engl J Med 375, 2255–2262, doi:10.1056/NEJMoa1609279 (2016). PubMed DOI PMC
Snyder A et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371, 2189–2199, doi:10.1056/NEJMoa1406498 (2014). PubMed DOI PMC
Rosenberg JE et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920, doi:10.1016/S0140-6736(16)00561-4 (2016). PubMed DOI PMC
Sahin U & Tureci O Personalized vaccines for cancer immunotherapy. Science 359, 1355–1360, doi:10.1126/science.aar7112 (2018). PubMed DOI
Hu Z, Ott PA & Wu CJ Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18, 168–182, doi:10.1038/nri.2017.131 (2018). PubMed DOI PMC
Yadav M et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576, doi:10.1038/nature14001 (2014). PubMed DOI
Kreiter S et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696, doi:10.1038/nature14426 (2015). PubMed DOI PMC
Ott PA et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221, doi:10.1038/nature22991 (2017). PubMed DOI PMC
Sahin U et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226, doi:10.1038/nature23003 (2017). PubMed DOI
Schumacher TN & Schreiber RD Neoantigens in cancer immunotherapy. Science 348, 69–74, doi:10.1126/science.aaa4971 (2015). PubMed DOI
Mehta NK, Moynihan KD & Irvine DJ Engineering New Approaches to Cancer Vaccines. Cancer Immunol Res 3, 836–843, doi:10.1158/2326-6066.CIR-15-0112 (2015). PubMed DOI PMC
Bookstaver ML, Tsai SJ, Bromberg JS & Jewell CM Improving Vaccine and Immunotherapy Design Using Biomaterials. Trends Immunol 39, 135–150, doi:10.1016/j.it.2017.10.002 (2018). PubMed DOI PMC
Scheetz L et al. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 3, 768–782, doi:10.1038/s41551-019-0436-x (2019). PubMed DOI PMC
Ilyinskii PO et al. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine 32, 2882–2895, doi:10.1016/j.vaccine.2014.02.027 (2014). PubMed DOI PMC
Varypataki EM et al. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. Journal of controlled release : official journal of the Controlled Release Society 226, 98–106, doi:10.1016/j.jconrel.2016.02.018 (2016). PubMed DOI
Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A & Moon JJ Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 16, 489–496, doi:10.1038/nmat4822 (2017). PubMed DOI PMC
Scott EA et al. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 33, 6211–6219, doi:10.1016/j.biomaterials.2012.04.060 (2012). PubMed DOI
Fox CB & Haensler J An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert review of vaccines 12, 747–758, doi:10.1586/14760584.2013.811188 (2013). PubMed DOI
Liu H et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522, doi:10.1038/nature12978 (2014). PubMed DOI PMC
Cho HI, Barrios K, Lee YR, Linowski AK & Celis E BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunol Immunother 62, 787–799, doi:10.1007/s00262-012-1382-6 (2013). PubMed DOI PMC
Ignacio BJ, Albin TJ, Esser-Kahn AP & Verdoes M Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjug Chem 29, 587–603, doi:10.1021/acs.bioconjchem.7b00808 (2018). PubMed DOI PMC
Zom GG et al. Efficient induction of antitumor immunity by synthetic toll-like receptor ligand-peptide conjugates. Cancer Immunol Res 2, 756–764, doi:10.1158/2326-6066.CIR-13-0223 (2014). PubMed DOI
Lu BL, Williams GM, Verdon DJ, Dunbar PR & Brimble MA Synthesis and Evaluation of Novel TLR2 Agonists as Potential Adjuvants for Cancer Vaccines. J Med Chem, doi:10.1021/acs.jmedchem.9b01044 (2019). PubMed DOI
Zhu G et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun 8, 1954, doi:10.1038/s41467-017-02191-y (2017). PubMed DOI PMC
Nair-Gupta P et al. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506–521, doi:10.1016/j.cell.2014.04.054 (2014). PubMed DOI PMC
Wille-Reece U et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc Natl Acad Sci U S A 102, 15190–15194, doi:0507484102 [pii] 10.1073/pnas.0507484102 (2005). PubMed DOI PMC
Hailemichael Y et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nature medicine 19, 465–472, doi:10.1038/nm.3105 (2013). PubMed DOI PMC
Kenter GG et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361, 1838–1847, doi:10.1056/NEJMoa0810097 (2009). PubMed DOI
Melief C Peptide-Based Therapeutic Cancer Vaccines. (2018).
Cavalli S, Albericio F & Kros A Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience. Chem Soc Rev 39, 241–263, doi:10.1039/b906701a (2010). PubMed DOI
Lynn GM et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat Biotechnol 33, 1201–1210, doi:10.1038/nbt.3371 (2015). PubMed DOI PMC
Lynn GM et al. Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction. Biomacromolecules 20, 854–870, doi:10.1021/acs.biomac.8b01473 (2019). PubMed DOI
Coffman RL, Sher A & Seder RA Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503, doi:S1074-7613(10)00362-6 [pii] 10.1016/j.immuni.2010.10.002 (2010). PubMed DOI PMC
Reddy ST, Rehor A, Schmoekel HG, Hubbell JA & Swartz MA In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. Journal of controlled release : official journal of the Controlled Release Society 112, 26–34, doi:10.1016/j.jconrel.2006.01.006 (2006). PubMed DOI
Manolova V et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38, 1404–1413, doi:10.1002/eji.200737984 (2008). PubMed DOI
Nuhn L et al. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci U S A 113, 8098–8103, doi:10.1073/pnas.1600816113 (2016). PubMed DOI PMC
Shukla NM, Malladi SS, Mutz CA, Balakrishna R & David SA Structure-activity relationships in human toll-like receptor 7-active imidazoquinoline analogues. J Med Chem 53, 4450–4465, doi:10.1021/jm100358c (2010). PubMed DOI PMC
Wilson DS et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat Mater 18, 175–185, doi:10.1038/s41563-018-0256-5 (2019). PubMed DOI
Vasilakos JP & Tomai MA The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert review of vaccines 12, 809–819, doi:10.1586/14760584.2013.811208 (2013). PubMed DOI
Liaw A & Wiener M Classification and Regression by randomForest. R News 2, 18–22, doi:citeulike-article-id:1121494 (2002).
Choe Y et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281, 12824–12832, doi:10.1074/jbc.M513331200 (2006). PubMed DOI
Kloetzel PM Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2, 179–187, doi:10.1038/35056572 (2001). PubMed DOI
Jewett JC & Bertozzi CR Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39, 1272–1279 (2010). PubMed PMC
van Poelgeest MI et al. Vaccination against Oncoproteins of HPV16 for Noninvasive Vulvar/Vaginal Lesions: Lesion Clearance Is Related to the Strength of the T-Cell Response. Clin Cancer Res 22, 2342–2350, doi:10.1158/1078-0432.CCR-15-2594 (2016). PubMed DOI
Bijker MS et al. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol 38, 1033–1042, doi:10.1002/eji.200737995 (2008). PubMed DOI
Moutaftsi M et al. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 24, 817–819, doi:10.1038/nbt1215 (2006). PubMed DOI
Rubinsteyn A et al. Computational Pipeline for the PGV-001 Neoantigen Vaccine Trial. Frontiers in immunology 8, 1807, doi:10.3389/fimmu.2017.01807 (2017). PubMed DOI PMC
Abelin JG et al. Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity 46, 315–326, doi:10.1016/j.immuni.2017.02.007 (2017). PubMed DOI PMC
Thompson EA & Lore K Non-human primates as a model for understanding the mechanism of action of toll-like receptor-based vaccine adjuvants. Curr Opin Immunol 47, 1–7, doi:10.1016/j.coi.2017.06.006 (2017). PubMed DOI
Moynihan KD et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nature medicine 22, 1402–1410, doi:10.1038/nm.4200 (2016). PubMed DOI PMC
Qiu F et al. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials 182, 82–91, doi:10.1016/j.biomaterials.2018.07.052 (2018). PubMed DOI PMC
Li AW et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat Mater 17, 528–534, doi:10.1038/s41563-018-0028-2 (2018). PubMed DOI PMC
Wendorf J et al. A practical approach to the use of nanoparticles for vaccine delivery. J Pharm Sci 95, 2738–2750, doi:10.1002/jps.20728 (2006). PubMed DOI
Kranz LM et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401, doi:10.1038/nature18300 (2016). PubMed DOI
Sultan H et al. Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunol Immunother 66, 203–213, doi:10.1007/s00262-016-1834-5 (2017). PubMed DOI PMC
Lynn GM, Laga R & Jewell CM Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Lett 459, 192–203, doi:10.1016/j.canlet.2019.114427 (2019). PubMed DOI PMC
Welters MJ et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci Transl Med 8, 334ra352, doi:10.1126/scitranslmed.aad8307 (2016). PubMed DOI
Cadena A et al. Radiation and Anti-Cancer Vaccines: A Winning Combination. Vaccines (Basel) 6, doi:10.3390/vaccines6010009 (2018). PubMed DOI PMC
Darrah PA et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nature medicine 13, 843–850, doi:10.1038/nm1592 (2007). PubMed DOI
Quinn KM et al. Comparative analysis of the magnitude, quality, phenotype, and protective capacity of simian immunodeficiency virus gag-specific CD8+ T cells following human-, simian-, and chimpanzee-derived recombinant adenoviral vector immunization. J Immunol 190, 2720–2735, doi:10.4049/jimmunol.1202861 (2013). PubMed DOI PMC
Ishizuka AS et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nature medicine 22, 614–623, doi:10.1038/nm.4110 (2016). PubMed DOI PMC
Roederer M, Nozzi JL & Nason MC SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry. Part A : the journal of the International Society for Analytical Cytology 79, 167–174, doi:10.1002/cyto.a.21015 (2011). PubMed DOI PMC
Kim Y et al. Immune epitope database analysis resource. Nucleic Acids Res 40, W525–530, doi:10.1093/nar/gks438 (2012). PubMed DOI PMC
Nielsen M et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12, 1007–1017, doi:10.1110/ps.0239403 (2003). PubMed DOI PMC
Peters B & Sette A Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6, 132, doi:10.1186/1471-2105-6-132 (2005). PubMed DOI PMC
Aken BL et al. Ensembl 2017. Nucleic Acids Res 45, D635–D642, doi:10.1093/nar/gkw1104 (2017). PubMed DOI PMC
Liu X, Wu C, Li C & Boerwinkle E dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat 37, 235–241, doi:10.1002/humu.22932 (2016). PubMed DOI PMC
Kyte J & Doolittle RF A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132 (1982). PubMed
Tate JG et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research 47, D941–D947, doi:10.1093/nar/gky1015 (2018). PubMed DOI PMC
Recent advances on smart glycoconjugate vaccines in infections and cancer