Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens

. 2020 Mar ; 38 (3) : 320-332. [epub] 20200113

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid31932728

Grantová podpora
P50 CA062924 NCI NIH HHS - United States
29106 Cancer Research UK - United Kingdom
R01 EB027143 NIBIB NIH HHS - United States
Z01 AI005016 Intramural NIH HHS - United States
T32 GM007171 NIGMS NIH HHS - United States

Odkazy

PubMed 31932728
PubMed Central PMC7065950
DOI 10.1038/s41587-019-0390-x
PII: 10.1038/s41587-019-0390-x
Knihovny.cz E-zdroje

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.

Zobrazit více v PubMed

Lennerz V et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci U S A 102, 16013–16018, doi:10.1073/pnas.0500090102 (2005). PubMed DOI PMC

Tran E et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645, doi:10.1126/science.1251102 (2014). PubMed DOI PMC

Tran E et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N Engl J Med 375, 2255–2262, doi:10.1056/NEJMoa1609279 (2016). PubMed DOI PMC

Snyder A et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371, 2189–2199, doi:10.1056/NEJMoa1406498 (2014). PubMed DOI PMC

Rosenberg JE et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920, doi:10.1016/S0140-6736(16)00561-4 (2016). PubMed DOI PMC

Sahin U & Tureci O Personalized vaccines for cancer immunotherapy. Science 359, 1355–1360, doi:10.1126/science.aar7112 (2018). PubMed DOI

Hu Z, Ott PA & Wu CJ Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18, 168–182, doi:10.1038/nri.2017.131 (2018). PubMed DOI PMC

Yadav M et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576, doi:10.1038/nature14001 (2014). PubMed DOI

Kreiter S et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696, doi:10.1038/nature14426 (2015). PubMed DOI PMC

Ott PA et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221, doi:10.1038/nature22991 (2017). PubMed DOI PMC

Sahin U et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226, doi:10.1038/nature23003 (2017). PubMed DOI

Schumacher TN & Schreiber RD Neoantigens in cancer immunotherapy. Science 348, 69–74, doi:10.1126/science.aaa4971 (2015). PubMed DOI

Mehta NK, Moynihan KD & Irvine DJ Engineering New Approaches to Cancer Vaccines. Cancer Immunol Res 3, 836–843, doi:10.1158/2326-6066.CIR-15-0112 (2015). PubMed DOI PMC

Bookstaver ML, Tsai SJ, Bromberg JS & Jewell CM Improving Vaccine and Immunotherapy Design Using Biomaterials. Trends Immunol 39, 135–150, doi:10.1016/j.it.2017.10.002 (2018). PubMed DOI PMC

Scheetz L et al. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 3, 768–782, doi:10.1038/s41551-019-0436-x (2019). PubMed DOI PMC

Ilyinskii PO et al. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine 32, 2882–2895, doi:10.1016/j.vaccine.2014.02.027 (2014). PubMed DOI PMC

Varypataki EM et al. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. Journal of controlled release : official journal of the Controlled Release Society 226, 98–106, doi:10.1016/j.jconrel.2016.02.018 (2016). PubMed DOI

Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A & Moon JJ Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 16, 489–496, doi:10.1038/nmat4822 (2017). PubMed DOI PMC

Scott EA et al. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 33, 6211–6219, doi:10.1016/j.biomaterials.2012.04.060 (2012). PubMed DOI

Fox CB & Haensler J An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert review of vaccines 12, 747–758, doi:10.1586/14760584.2013.811188 (2013). PubMed DOI

Liu H et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522, doi:10.1038/nature12978 (2014). PubMed DOI PMC

Cho HI, Barrios K, Lee YR, Linowski AK & Celis E BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunol Immunother 62, 787–799, doi:10.1007/s00262-012-1382-6 (2013). PubMed DOI PMC

Ignacio BJ, Albin TJ, Esser-Kahn AP & Verdoes M Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjug Chem 29, 587–603, doi:10.1021/acs.bioconjchem.7b00808 (2018). PubMed DOI PMC

Zom GG et al. Efficient induction of antitumor immunity by synthetic toll-like receptor ligand-peptide conjugates. Cancer Immunol Res 2, 756–764, doi:10.1158/2326-6066.CIR-13-0223 (2014). PubMed DOI

Lu BL, Williams GM, Verdon DJ, Dunbar PR & Brimble MA Synthesis and Evaluation of Novel TLR2 Agonists as Potential Adjuvants for Cancer Vaccines. J Med Chem, doi:10.1021/acs.jmedchem.9b01044 (2019). PubMed DOI

Zhu G et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun 8, 1954, doi:10.1038/s41467-017-02191-y (2017). PubMed DOI PMC

Nair-Gupta P et al. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506–521, doi:10.1016/j.cell.2014.04.054 (2014). PubMed DOI PMC

Wille-Reece U et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc Natl Acad Sci U S A 102, 15190–15194, doi:0507484102 [pii] 10.1073/pnas.0507484102 (2005). PubMed DOI PMC

Hailemichael Y et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nature medicine 19, 465–472, doi:10.1038/nm.3105 (2013). PubMed DOI PMC

Kenter GG et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361, 1838–1847, doi:10.1056/NEJMoa0810097 (2009). PubMed DOI

Melief C Peptide-Based Therapeutic Cancer Vaccines. (2018).

Cavalli S, Albericio F & Kros A Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience. Chem Soc Rev 39, 241–263, doi:10.1039/b906701a (2010). PubMed DOI

Lynn GM et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat Biotechnol 33, 1201–1210, doi:10.1038/nbt.3371 (2015). PubMed DOI PMC

Lynn GM et al. Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction. Biomacromolecules 20, 854–870, doi:10.1021/acs.biomac.8b01473 (2019). PubMed DOI

Coffman RL, Sher A & Seder RA Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503, doi:S1074-7613(10)00362-6 [pii] 10.1016/j.immuni.2010.10.002 (2010). PubMed DOI PMC

Reddy ST, Rehor A, Schmoekel HG, Hubbell JA & Swartz MA In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. Journal of controlled release : official journal of the Controlled Release Society 112, 26–34, doi:10.1016/j.jconrel.2006.01.006 (2006). PubMed DOI

Manolova V et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38, 1404–1413, doi:10.1002/eji.200737984 (2008). PubMed DOI

Nuhn L et al. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci U S A 113, 8098–8103, doi:10.1073/pnas.1600816113 (2016). PubMed DOI PMC

Shukla NM, Malladi SS, Mutz CA, Balakrishna R & David SA Structure-activity relationships in human toll-like receptor 7-active imidazoquinoline analogues. J Med Chem 53, 4450–4465, doi:10.1021/jm100358c (2010). PubMed DOI PMC

Wilson DS et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat Mater 18, 175–185, doi:10.1038/s41563-018-0256-5 (2019). PubMed DOI

Vasilakos JP & Tomai MA The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert review of vaccines 12, 809–819, doi:10.1586/14760584.2013.811208 (2013). PubMed DOI

Liaw A & Wiener M Classification and Regression by randomForest. R News 2, 18–22, doi:citeulike-article-id:1121494 (2002).

Choe Y et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281, 12824–12832, doi:10.1074/jbc.M513331200 (2006). PubMed DOI

Kloetzel PM Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2, 179–187, doi:10.1038/35056572 (2001). PubMed DOI

Jewett JC & Bertozzi CR Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39, 1272–1279 (2010). PubMed PMC

van Poelgeest MI et al. Vaccination against Oncoproteins of HPV16 for Noninvasive Vulvar/Vaginal Lesions: Lesion Clearance Is Related to the Strength of the T-Cell Response. Clin Cancer Res 22, 2342–2350, doi:10.1158/1078-0432.CCR-15-2594 (2016). PubMed DOI

Bijker MS et al. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol 38, 1033–1042, doi:10.1002/eji.200737995 (2008). PubMed DOI

Moutaftsi M et al. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 24, 817–819, doi:10.1038/nbt1215 (2006). PubMed DOI

Rubinsteyn A et al. Computational Pipeline for the PGV-001 Neoantigen Vaccine Trial. Frontiers in immunology 8, 1807, doi:10.3389/fimmu.2017.01807 (2017). PubMed DOI PMC

Abelin JG et al. Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity 46, 315–326, doi:10.1016/j.immuni.2017.02.007 (2017). PubMed DOI PMC

Thompson EA & Lore K Non-human primates as a model for understanding the mechanism of action of toll-like receptor-based vaccine adjuvants. Curr Opin Immunol 47, 1–7, doi:10.1016/j.coi.2017.06.006 (2017). PubMed DOI

Moynihan KD et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nature medicine 22, 1402–1410, doi:10.1038/nm.4200 (2016). PubMed DOI PMC

Qiu F et al. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials 182, 82–91, doi:10.1016/j.biomaterials.2018.07.052 (2018). PubMed DOI PMC

Li AW et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat Mater 17, 528–534, doi:10.1038/s41563-018-0028-2 (2018). PubMed DOI PMC

Wendorf J et al. A practical approach to the use of nanoparticles for vaccine delivery. J Pharm Sci 95, 2738–2750, doi:10.1002/jps.20728 (2006). PubMed DOI

Kranz LM et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401, doi:10.1038/nature18300 (2016). PubMed DOI

Sultan H et al. Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunol Immunother 66, 203–213, doi:10.1007/s00262-016-1834-5 (2017). PubMed DOI PMC

Lynn GM, Laga R & Jewell CM Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Lett 459, 192–203, doi:10.1016/j.canlet.2019.114427 (2019). PubMed DOI PMC

Welters MJ et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci Transl Med 8, 334ra352, doi:10.1126/scitranslmed.aad8307 (2016). PubMed DOI

Cadena A et al. Radiation and Anti-Cancer Vaccines: A Winning Combination. Vaccines (Basel) 6, doi:10.3390/vaccines6010009 (2018). PubMed DOI PMC

Darrah PA et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nature medicine 13, 843–850, doi:10.1038/nm1592 (2007). PubMed DOI

Quinn KM et al. Comparative analysis of the magnitude, quality, phenotype, and protective capacity of simian immunodeficiency virus gag-specific CD8+ T cells following human-, simian-, and chimpanzee-derived recombinant adenoviral vector immunization. J Immunol 190, 2720–2735, doi:10.4049/jimmunol.1202861 (2013). PubMed DOI PMC

Ishizuka AS et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nature medicine 22, 614–623, doi:10.1038/nm.4110 (2016). PubMed DOI PMC

Roederer M, Nozzi JL & Nason MC SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry. Part A : the journal of the International Society for Analytical Cytology 79, 167–174, doi:10.1002/cyto.a.21015 (2011). PubMed DOI PMC

Kim Y et al. Immune epitope database analysis resource. Nucleic Acids Res 40, W525–530, doi:10.1093/nar/gks438 (2012). PubMed DOI PMC

Nielsen M et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12, 1007–1017, doi:10.1110/ps.0239403 (2003). PubMed DOI PMC

Peters B & Sette A Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6, 132, doi:10.1186/1471-2105-6-132 (2005). PubMed DOI PMC

Aken BL et al. Ensembl 2017. Nucleic Acids Res 45, D635–D642, doi:10.1093/nar/gkw1104 (2017). PubMed DOI PMC

Liu X, Wu C, Li C & Boerwinkle E dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat 37, 235–241, doi:10.1002/humu.22932 (2016). PubMed DOI PMC

Kyte J & Doolittle RF A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132 (1982). PubMed

Tate JG et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research 47, D941–D947, doi:10.1093/nar/gky1015 (2018). PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Recent advances on smart glycoconjugate vaccines in infections and cancer

. 2022 Jul ; 289 (14) : 4251-4303. [epub] 20210601

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...