Recent advances on smart glycoconjugate vaccines in infections and cancer
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
U01 CA225730
NCI NIH HHS - United States
PubMed
33934527
PubMed Central
PMC9542079
DOI
10.1111/febs.15909
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, glycosylation, immune system, infection, vaccination,
- MeSH
- COVID-19 * prevence a kontrola MeSH
- glykokonjugáty terapeutické užití MeSH
- lidé MeSH
- nádory * prevence a kontrola MeSH
- polysacharidy terapeutické užití MeSH
- SARS-CoV-2 MeSH
- vakcíny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- glykokonjugáty MeSH
- polysacharidy MeSH
- vakcíny * MeSH
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Blood Transfusion Center of Slovenia Ljubljana Slovenia
Departamento de Química Orgánica Universidad de Málaga IBIMA Spain
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Chemistry 'Ugo Schiff' University of Florence Sesto Fiorentino Italy
Department of Chemistry and CRC Materiali Polimerici University of Milan Italy
Department of Medical Biotechnology and Translational Medicine University of Milan Milano Italy
Department of Microbiology and Parasitology Jan Kochanowski University Kielce Poland
Faculty of Arts and Sciences Department of Chemistry Recep Tayyip Erdogan University Rize Turkey
I3S Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
Institute of Biomolecular Chemistry Pozzuoli Italy
Instituto de Ciências Biomédicas Abel Salazar University of Porto Portugal
IPATIMUP Institute of Molecular Pathology and Immunology University of Porto Portugal
National Research Council CNR SCITEC Milan Italy
Zobrazit více v PubMed
Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Ronald L et al. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. PubMed
Varki A (2017) Biological roles of glycans. Glycobiology 27, 3–49. PubMed PMC
Toussi ND & Massari P (2014) Immune adjuvant effect of molecularly‐defined toll‐like receptor ligands. Vaccines 2, 323–353. PubMed PMC
Mancini RJ, Stutts L, Ryu KA, Tom JK & Esser‐Kahn AP (2014) Directing the immune system with chemical compounds. ACS Chem Biol 9, 1075–1085. PubMed PMC
Doran TM, Sarkar M & Kodadek T (2016) Chemical tools to monitor and manipulate adaptive immune responses. J Am Chem Soc 138, 6076–6094. PubMed PMC
van Kasteren SI, Neefjes J & Ovaa H (2018) Creating molecules that modulate immune responses. Nat Rev Chem 2, 184–193.
Valverde P, Ardá A, Reichardt NC, Jiménez‐Barbero J & Gimeno A (2019) Glycans in drug discovery. Med Chem Commun 10, 1678–1691. PubMed PMC
Mettu R, Chen C‐Y & Wu C‐Y (2020) Synthetic carbohydrate‐based vaccines: challenges and opportunities. J Biomed Sci 27, 9. PubMed PMC
Tong W, Maira M, Roychoudhury R, Galan A, Brahimi F, Gilbert M, Cunningham A‐M, Josephy S, Pirvulescu I, Moffett S et al. (2019) Vaccination with tumor‐ganglioside glycomimetics activates a selective immunity that affords cancer therapy. Cell Chem Biol 26, 1013–1026. PubMed
Hevey R (2019) Strategies for the development of glycomimetic drug candidates. Pharmaceuticals 12, 55. PubMed PMC
Tamburrini A, Colombo C & Bernardi A (2020) Design and synthesis of glycomimetics: recent advances. Med Res Rev 40, 495–531. PubMed
Buskas T, Thompson P & Boons G‐J (2009) Immunotherapy for cancer: synthetic carbohydrate‐based vaccines. Chem Commun 36, 5335–5349. PubMed PMC
Johannssen T & Lepenies B (2017) Glycan‐based cell targeting to modulate immune responses. Trends Biotechnol 35, 334–346. PubMed
Marqvorsen MHS, Araman C & Van KAsteren SI (2019) Going native: synthesis of glycoproteins and glycopeptides via native linkages to study glycan‐specific roles in the immune system. Bioconjug Chem 30, 2715–2726. PubMed PMC
Avci F, Berti F, Dull P, Hennessey J, Pavliak V, Prasad AK, Vann W, Wacker M & Marcq O (2019) Glycoconjugates: what it would take to master these well‐known yet little‐understood immunogens for vaccine development. mSphere 4, 1–8. PubMed PMC
Costantino P, Rappuoli R & Berti F (2011) The design of semi‐synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 6, 1045–1066. PubMed
Borrow R, Dagan R, Zepp F, Hallander H & Poolman J (2011) Glycoconjugate vaccines and immune interactions, and implications for vaccination schedules. Expert Rev Vaccines 10, 1621–1631. PubMed
Duke JA & Avci FY (2018) Immunological mechanisms of glycoconjugate vaccines. In Carbohydrate‐Based Vaccines: From Concept to Clinic (Prasad AK, ed), pp. 3–61. Pfizer Vaccines Research and Development, Pearl River, NY.
Li Q & Guo Z (2018) Recent advances in toll like receptor‐targeting glycoconjugate vaccines. Molecules 23, 1583. PubMed PMC
Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D'Haese JG, Schloesser H et al. (2019) Advances in cancer immunotherapy 2019 ‐ latest trends. J Exp Clin Cancer Res 38, 268. PubMed PMC
Iwasaki A & Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327, 291–295. PubMed PMC
Brubaker SW, Bonham KS, Zanoni I & Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33, 257–290. PubMed PMC
Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self‐associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21, 1121–1124. PubMed PMC
Dowling JK & Mansell A (2016) Toll‐like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunol 5, e85. PubMed PMC
Nielsen AE, Hantho JD & Mancini RJ (2017) Synthetic agonists of NOD‐like, RIG‐I‐like, and C‐type lectin receptors for probing the inflammatory immune response. Future Med Chem 9, 1345–1360. PubMed
Yan H, Kamiya T, Suabjakyong P & Tsuji NM (2015) Targeting C‐type lectin receptors for cancer immunity. Front Immunol 6, 408. PubMed PMC
Busold S, Nagy NA, Tas SW, van Ree R, de Jong EC & Geijtenbeek TBH (2020) Various tastes of sugar: the potential of glycosylation in targeting and modulating human immunity via C‐type lectin receptors. Front Immunol 11, 134. PubMed PMC
Lynn GM, Laga R, Darrah PA, Ishizuka AS, Balaci AJ, Dulcey AE, Pechar M, Pola R, Gerner MY, Yamamoto A et al. (2015) In vivo characterization of the physicochemical properties of polymer‐linked TLR agonists that enhance vaccine immunogenicity. Nat Biotechnol 33, 1201–1210. PubMed PMC
Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez‐Valdez RA, Coble VL, Tobin K, Nichols SR, Itzkowitz Y, Zaidi N et al. (2020) Peptide–TLR‐7/8a conjugate vaccines chemically programmed for nanoparticle self‐assembly enhance CD8 T‐cell immunity to tumor antigens. Nat Biotechnol 38, 320–332. PubMed PMC
Qian C & Cao X (2018) Dendritic cells in the regulation of immunity and inflammation. Semin Immunol 35, 3–11. PubMed
RodrÍguez E, Schetters STT & van Kooyk Y (2018) The Tumour Glyco‐code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 18, 204–211. PubMed
Amon R, Reuven EM, Ben‐Arye SL & Padler‐Karavani V (2014) Glycans in immune recognition and response. Carbohydr Res 389, 115–122. PubMed
Baum LG & Cobb BA (2017) The direct and indirect effects of glycans on immune function. Glycobiology 27, 619–624. PubMed
Buettner MJ, Shah SR, Saeui CT, Ariss R & Yarema KJ (2018) Improving immunotherapy through glycodesign. Front Immunol 2018, 2485. PubMed PMC
Cipolla L, Peri F & Airoldi C (2008) Glycoconjugates in cancer therapy. Anticancer Agents Med Chem 8, 92–121. PubMed
Hossain F & Andreana PR (2019) Developments in carbohydrate‐based cancer therapeutics. Pharmaceuticals 12, 84. PubMed PMC
Frenz T, Grabski E, Durán V, Hozsa C, Stępczyńska A, Furch M, Gieseler RK & Kalinke U (2015) Antigen presenting cell‐selective drug delivery by glycan‐decorated nanocarriers. Eur J Pharm Biopharm 95, 13–17. PubMed
Jin K‐T, Lan H‐R, Chen X‐Y, Wang S‐B, Ying X‐J, Lin Y & Mou X‐Z (2019) Recent advances in carbohydrate‐based cancer vaccines. Biotechnol Lett 41, 641–650. PubMed
Nishat S & Andreana PR (2016) Entirely carbohydrate‐based vaccines: an emerging field for specific and selective immune responses. Vaccines 4, 19. PubMed PMC
Astronomo RD & Burton DR (2010) Carbohydrate Vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 9, 308–324. PubMed PMC
Haji‐Ghassemi O, Blackler RJ, Young NM & Evans SV (2015) Antibody recognition of carbohydrate epitopes†. Glycobiology 25, 920–952. PubMed
Purohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D et al. (2018) Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun 9, 258. PubMed PMC
Sun L, Middleton DR, Wantuch PL, Ozdilek A & Avci FY (2016) Carbohydrates as T‐cell antigens with implications in health and disease. Glycobiology 26, 1029–1040. PubMed PMC
Colombo C, Pitirollo O & Lay L (2018) Recent advances in the synthesis of glycoconjugates for vaccine development. Molecules 23, 1712. PubMed PMC
Berti F & Adamo R (2018) Antimicrobial glycoconjugate vaccines: an overview of classic and modern approaches for protein modification. Chem Soc Rev 47, 9015–9025. PubMed
Parry AL, Clemson NA, Ellis J, Bernhard SSR, Davis BG & Cameron NR (2013) ‘Multicopy multivalent’ glycopolymer‐stabilized gold nanoparticles as potential synthetic cancer vaccines. J Am Chem Soc 135, 9362–9365. PubMed PMC
Micoli F, Del Bino L, Alfini R, Carboni F, Romano MR & Adamo R (2019) Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 18, 881–895. PubMed
Bhatia S, Dimde M & Haag R (2014) Multivalent glycoconjugates as vaccines and potential drug candidates. Med Chem Commun 5, 862–878.
Rappuoli R (2018) Glycoconjugate vaccines: principles and mechanisms. Sci Transl Med 10, eaat4615. PubMed
Park BS, Song DH, Kim HM, Choi B‐S, Lee H & Lee J‐O (2009) The structural basis of lipopolysaccharide recognition by the TLR4–MD‐2 complex. Nature 458, 1191–1195. PubMed
Rathinam VAK, Zhao Y & Shao F (2019) Innate immunity to intracellular LPS. Nat Immunol 20, 527–533. PubMed PMC
Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D’Errico G, Zamyatina A, Peri F, Berisio R, Jerala R et al. (2015) Chemistry of lipid A: at the heart of innate immunity. Chemistry 21, 500–519. PubMed
Richard K, Perkins DJ, Harberts EM, Song Y, Gopalakrishnan A, Shirey KA, Lai W, Vlk A, Mahurkar A, Nallar S et al. (2020) Dissociation of TRIF bias and adjuvanticity. Vaccine 38, 4298–4308. PubMed PMC
Lee C‐J, Lee LH, Lu C & Wu A (2001) Bacterial polysaccharides as vaccines — immunity and chemical characterization BT ‐ the molecular immunology of complex carbohydrates—2. In The Molecular Immunology of Complex Carbohydrates—2 (Wu AM, ed), pp. 453–471. Springer, New York, NY. PubMed
Krieg AM (2003) CpG motifs: the active ingredient in bacterial extracts? Nat Med 9, 831–835. PubMed
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al. (2000) A toll‐like receptor recognizes bacterial DNA. Nature 408, 740–745. PubMed
Krieg AM (2006) Therapeutic potential of toll‐like receptor 9 activation. Nat Rev Drug Discov 5, 471–484. PubMed
Koshy ST & Mooney DJ (2016) Biomaterials for enhancing anti‐cancer immunity. Curr Opin Biotechnol 40, 1–8. PubMed PMC
Zhang Y, Lin S, Wang X‐Y & Zhu G (2019) Nanovaccines for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobi 11, e1559. PubMed PMC
Micoli F, Adamo R & Costantino P (2018) Protein carriers for glycoconjugate vaccines: history, selection criteria, characterization and new trends. Molecules 23, 1451. PubMed PMC
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM & Trent MS (2016) The power of asymmetry: architecture and assembly of the gram‐negative outer membrane lipid bilayer. Annu Rev Microbiol 70, 255–278. PubMed
Nanra JS, Buitrago SM, Crawford S, Ng J, Fink PS, Hawkins J, Scully IL, McNeil LK, Aste‐Amézaga JM, Cooper D et al. (2013) Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus . Hum Vaccin Immunother 9, 480–487. PubMed PMC
Hyams C, Camberlein E, Cohen JM, Bax K & Brown JS (2010) The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect Immun 78, 704–715. PubMed PMC
Brett PJ & Woods DE (1996) Structural and immunological characterization of Burkholderia pseudomallei O‐Polysaccharide‐Flagellin protein conjugates. Infect Immun 64, 2824–2828. PubMed PMC
Burtnick MN, Heiss C, Schuler AM, Azadi P & Brett PJ (2012) Development of novel O‐polysaccharide based glycoconjugates for immunization against glanders. Front Cell Infect Microbiol 2, 148. PubMed PMC
Scott AE, Burtnick MN, Stokes MGM, Whelan AO, Williamson ED, Atkins TP, Prior JL & Brett PJ (2014) Burkholderia pseudomallei capsular polysaccharide conjugates provide protection against acute melioidosis. Infect Immun 82, 3206–3213. PubMed PMC
Scott AE, Ngugi SA, Laws TR, Corser D, Lonsdale CL, D’Elia RV, Titball RW, Williamson ED, Atkins TP & Prior JL (2014) Protection against experimental melioidosis following immunisation with a lipopolysaccharide‐protein conjugate. J Immunol Res 2014, 392170. PubMed PMC
Avery OT & Goebel WF (1929) Chemo‐immunological studies on conjugated carbohydrate‐proteins: II. Immunological specificity of synthetic sugar‐protein antigens. J Exp Med 50, 533–550. PubMed PMC
Robbins JB & Schneerson R (1990) Evaluating the Haemophilus influenzae type B conjugate PRP‐D. N Engl J Med 323, 1415–1416. PubMed
Goldblatt D (2008) Bacteria, polysaccharides, vaccines and boosting: measuring and maintaining population immunity. Arch Dis Child 93, 646–647. PubMed
Heidelberger M & Avery OT (1923) The soluble specific substance of pneumococcus. J Exp Med 38, 73–79. PubMed PMC
Avci FY, Li X, Tsuji M & Kasper DL (2011) A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat Med 17, 1602–1609. PubMed PMC
Peeters C, Lagerman P, Weers O, Oomen L, Hoogerhout P, Beurret M, Poolman J & Reddin K (2003) Preparation of polysaccharide‐conjugate vaccines. Methods Mol Med 87, 153–174. PubMed
Sun X, Stefanetti G, Berti F & Kasper DL (2019) Polysaccharide structure dictates mechanism of adaptive immune response to glycoconjugate vaccines. Proc Natl Acad Sci USA 116, 193–198. PubMed PMC
Lin L, Qiao M, Zhang X & Linhardt RJ (2020) Site‐selective reactions for the synthesis of glycoconjugates in polysaccharide vaccine development. Carbohydr Polym 230, 115643. PubMed
Vella M & Pace D (2015) Glycoconjugate vaccines: an update. Expert Opin Biol Ther 15, 529–546. PubMed
Morelli L, Poletti L & Lay L (2011) Carbohydrates and immunology: synthetic oligosaccharide antigens for vaccine formulation. Eur J Org Chem 2011, 5723–5777.
Khatun F, Stephenson RJ & Toth I (2017) An overview of structural features of antibacterial glycoconjugate vaccines that influence their immunogenicity. Chemistry 23, 4233–4254. PubMed
Nunnally BK, Turula VE, , (2015) Vaccine analysis: strategies, principles, and control. In Vaccine Analysis: Strategies, Principles, and Control (Nunnally BK, Turula VE & Sitrin RD, eds), pp. 301–381. Springer‐Verlag, Berlin Heidelberg.
Jones C (2005) Vaccines based on the cell surface carbohydrates of pathogenic bacteria. An Acad Bras Cienc 77, 293–324. PubMed
Ravenscroft N, Haeuptle MA, Kowarik M, Fernandez FS, Carranza P, Brunner A, Steffen M, Wetter M, Keller S, Ruch C et al. (2015) Purification and characterization of a shigella conjugate vaccine, produced by glycoengineering Escherichia coli . Glycobiology 26, 51–62. PubMed
Klugman KP, Dagan R, Malley R & Whitney CG (2018) Pneumococcal conjugate vaccine and pneumococcal common protein vaccines. In Plotkin’s Vaccines (Plotkin S, Orenstein W, Offit P & Edwards KM, eds), pp. 773–815.e18. Elsevier, Philadelphia, PA.
Ojal J, Hammitt LL, Gaitho J, Scott JAG & Goldblatt D (2017) Pneumococcal conjugate vaccine induced igg and nasopharyngeal carriage of pneumococci: hyporesponsiveness and immune correlates of protection for carriage. Vaccine 35, 4652–4657. PubMed PMC
Gaidzik N, Westerlind U & Kunz H (2013) The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem Soc Rev 42, 4421. PubMed
Berti F & Adamo R (2013) Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem Biol 8, 1653–1663. PubMed
Henriques P, Dello Iacono L, Gimeno A, Biolchi A, Romano MR, Arda A, Bernardes GJL, Jimenez‐Barbero J, Berti F, Rappuoli R et al. (2020) Structure of a protective epitope reveals the importance of acetylation of Neisseria meningitidis serogroup A capsular polysaccharide. Proc Natl Acad Sci USA 117, 29795–29802. PubMed PMC
Verez‐Bencomo V, Fernández‐Santana V, Hardy E, Toledo ME, Rodríguez MC, Heynngnezz L, Rodriguez A, Baly A, Herrera L, Izquierdo M et al. (2004) A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type B. Science 305, 522–525. PubMed
Fernandez Santana V, Peña Icart L, Beurret M, Costa L & Verez Bencomo V (2006) Glycoconjugate vaccines against Haemophilus influenzae type B. In Methods in Enzymology (Fukuda M, ed), pp. 153–163. Elsevier, Amsterdam, the Netherlands. PubMed
Toraño G, Toledo ME, Baly A, Fernandez‐Santana V, Rodriguez F, Alvarez Y, Serrano T, Musachio A, Hernandez I, Hardy E et al. (2006) Phase I clinical evaluation of a synthetic oligosaccharide‐protein conjugate vaccine against Haemophilus influenzae type b in human adult volunteers. Clin Vaccine Immunol 13, 1052–1056. PubMed PMC
Fernández‐Santana V, Cardoso F, Rodriguez A, Carmenate T, Peña L, Valdés Y, Hardy E, Mawas F, Heynngnezz L, Rodríguez MC et al. (2004) Antigenicity and immunogenicity of a synthetic oligosaccharide‐protein conjugate vaccine against Haemophilus influenzae type B. Infect Immun 72, 7115–7123. PubMed PMC
Baek JY, Geissner A, Rathwell DCK, Meierhofer D, Pereira CL & Seeberger PH (2018) A modular synthetic route to size‐defined immunogenic Haemophilus influenzae b antigens is key to the identification of an Octasaccharide lead vaccine candidate. Chem Sci 9, 1279–1288. PubMed PMC
Gregory AE, Judy BM, Qazi O, Blumentritt CA, Brown KA, Shaw AM, Torres AG & Titball RW (2015) A gold nanoparticle‐linked glycoconjugate vaccine against Burkholderia mallei . Nanomedicine 11, 447–456. PubMed PMC
Torres AG, Gregory AE, Hatcher CL, Vinet‐Oliphant H, Morici LA, Titball RW & Roy CJ (2015) Protection of non‐human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 33, 686–692. PubMed PMC
Harding CM & Feldman MF (2019) Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli . Glycobiology 29, 519–529. PubMed PMC
van der Put RMF, Kim TH, Guerreiro C, Thouron F, Hoogerhout P, Sansonetti PJ, Westdijk J, Stork M, Phalipon A & Mulard LA (2016) A Synthetic carbohydrate conjugate vaccine candidate against shigellosis: improved bioconjugation and impact of alum on immunogenicity. Bioconjug Chem 27, 883–892. PubMed
Kaplonek P, Khan N, Reppe K, Schumann B, Emmadi M, Lisboa MP, Xu F‐F, Calow ADJ, Parameswarappa SG, Witzenrath M et al. (2018) Improving vaccines against Streptococcus pneumoniae using synthetic glycans. Proc Natl Acad Sci USA 115, 13353–13358. PubMed PMC
Emmadi M, Khan N, Lykke L, Reppe K, Parameswarappa SG, Lisboa MP, Wienhold S‐M, Witzenrath M, Pereira CL & Seeberger PH (2017) A Streptococcus pneumoniae type 2 oligosaccharide glycoconjugate elicits opsonic antibodies and is protective in an animal model of invasive pneumococcal disease. J Am Chem Soc 139, 14783–14791. PubMed
Schumann B, Hahm HS, Parameswarappa SG, Reppe K, Wahlbrink A, Govindan S, Kaplonek P, Pirofski L, Witzenrath M, Anish C et al. (2017) A Semisynthetic Streptococcus pneumoniae serotype 8 glycoconjugate vaccine. Sci Transl Med 9, eaaf5347. PubMed PMC
Cavallari M, Stallforth P, Kalinichenko A, Rathwell DCK, Gronewold TMA, Adibekian A, Mori L, Landmann R, Seeberger PH & De Libero G (2014) Asemisynthetic carbohydrate‐lipid vaccine that protects against S. pneumoniae in mice. Nat Chem Biol 10, 950–956. PubMed
Robbins JB, Kubler‐Kielb J, Vinogradov E, Mocca C, Pozsgay V, Shiloach J & Schneerson R (2009) Synthesis, characterization, and immunogenicity in mice of Shigella sonnei O‐specific oligosaccharide‐core‐protein conjugates. Proc Natl Acad Sci USA 106, 7974–7978. PubMed PMC
Martin CE, Broecker F, Oberli MA, Komor J, Mattner J, Anish C & Seeberger PH (2013) Immunological evaluation of a synthetic clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. J Am Chem Soc 135, 9713–9722. PubMed
Monteiro MA (2016) The Design of a Clostridium Difficile Carbohydrate‐Based Vaccine BT ‐ Vaccine Design: Methods and Protocols: Volume 1: Vaccines for Human Diseases, pp. 397–408.Springer, New York, NY. PubMed
Wang P, Huo C, Lang S, Caution K, Nick ST, Dubey P, Deora R & Huang X (2020) Chemical synthesis and immunological evaluation of a pentasaccharide bearing multiple rare sugars as a potential anti‐pertussis vaccine. Angew Chemie Int Ed 59, 6451–6458. PubMed PMC
Holz LE, Chua YC, de Menezes MN, Anderson RJ, Draper SL, Compton BJ, Chan STS, Mathew J, Li J, Kedzierski L et al. (2020) Glycolipid‐peptide vaccination induces liver‐resident memory CD8+ T cells that protect against rodent malaria. Sci Immunol 5, eaaz8035. PubMed
Ravinder M, Liao K‐S, Cheng Y‐Y, Pawar S, Lin T‐L, Wang J‐T & Wu C‐Y (2020) A synthetic carbohydrate‐protein conjugate vaccine candidate against Klebsiella pneumoniae serotype K2. J Org Chem 85, 15964–15977. PubMed
Frasch C, Preziosi M‐P & LaForce FM (2012) Development of a group A meningococcal conjugate vaccine, MenAfriVacTM. Hum Vaccin Immunother 8, 715–724. PubMed
Frasch CE (2005) Recent developments in Neisseria meningitidis group A conjugate vaccines. Expert Opin Biol Ther 5, 273–280. PubMed
Trotter CL, Lingani C, Fernandez K, Cooper LV, Bita A, Tevi‐Benissan C, Ronveaux O, Préziosi M‐P & Stuart JM (2017) Impact of MenAfriVac in nine countries of the African meningitis belt, 2010–15: an analysis of surveillance data. Lancet Infect Dis 17, 867–872. PubMed
Kumru OS, Joshi SB, Smith DE, Middaugh CR, Prusik T & Volkin DB (2014) Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals 42, 237–259. PubMed
Calloni I, Unione L, Jiménez‐Osés G, Corzana F, Del Bino L, Corrado A, Pitirollo O, Colombo C, Lay L, Adamo R et al. (2018) The conformation of the mannopyranosyl phosphate repeating unit of the capsular polysaccharide of Neisseria meningitidis serogroup A and its carba‐mimetic. Eur J Org Chem 2018, 4548–4555. PubMed PMC
Gao Q, Zaccaria C, Tontini M, Poletti L, Costantino P & Lay L (2012) Synthesis and preliminary biological evaluation of carba analogues from Neisseria meningitidis A capsular polysaccharide. Org Biomol Chem 10, 6673–6681. PubMed
Gao Q, Tontini M, Brogioni G, Nilo A, Filippini S, Harfouche C, Polito L, Romano MR, Costantino P, Berti F et al. (2013) Immunoactivity of protein conjugates of carba analogues from Neisseria meningitidis A capsular polysaccharide. ACS Chem Biol 8, 2561–2567. PubMed
Enotarpi J, Tontini M, Balocchi C, van der Es D, Auberger L, Balducci E, Carboni F, Proietti D, Casini D, Filippov DV et al. (2020) A stabilized glycomimetic conjugate vaccine inducing protective antibodies against Neisseria meningitidis serogroup A. Nat Commun 11, 1–9. PubMed PMC
Cohen D, Atsmon J, Artaud C, Meron‐Sudai S, Gougeon M‐L, Bialik A, Goren S, Asato V, Ariel‐Cohen O, Reizis A et al. (2021) Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: a phase 1, dose‐escalating, single‐blind, randomised. Placebo‐controlled study. Lancet Infect Dis 21, 546–558. PubMed
Adamo R, Nilo A, Castagner B, Boutureira O, Berti F & Bernardes GJL (2013) Synthetically defined glycoprotein vaccines: current status and future directions. Chem Sci 4, 2995–3008. PubMed PMC
Grayson EJ, Bernardes GJL, Chalker JM, Boutureira O, Koeppe JR & Davis BG (2011) A coordinated synthesis and conjugation strategy for the preparation of homogeneous glycoconjugate vaccine candidates. Angew Chemie Int Ed 50, 4127–4132. PubMed
Hu QY, Allan M, Adamo R, Quinn D, Zhai H, Wu G, Clark K, Zhou J, Ortiz S, Wang B et al. (2013) Synthesis of a well‐defined glycoconjugate vaccine by a tyrosine‐selective conjugation strategy. Chem Sci 4, 3827–3832.
Nilo A, Allan M, Brogioni B, Proietti D, Cattaneo V, Crotti S, Sokup S, Zhai H, Margarit I, Berti F et al. (2014) Tyrosine‐directed conjugation of large glycans to proteins via copper‐free click chemistry. Bioconjug Chem 25, 2105–2111. PubMed
Nilo A, Morelli L, Passalacqua I, Brogioni B, Allan M, Carboni F, Pezzicoli A, Zerbini F, Maione D, Fabbrini M et al. (2015) Anti‐group B Streptococcus glycan‐conjugate vaccines using pilus protein GBS80 as carrier and antigen: comparing lysine and tyrosine‐directed conjugation. ACS Chem Biol 10, 1737–1746. PubMed
Nilo A, Passalacqua I, Fabbrini M, Allan M, Usera A, Carboni F, Brogioni B, Pezzicoli A, Cobb J, Romano MR et al. (2015) Exploring the effect of conjugation site and chemistry on the immunogenicity of an anti‐group B Streptococcus glycoconjugate vaccine based on GBS67 pilus protein and type V polysaccharide. Bioconjug Chem 26, 1839–1849. PubMed
Rabuka D (2010) Chemoenzymatic methods for site‐specific protein modification. Curr Opin Chem Biol 14, 790–796. PubMed PMC
Stefanetti G, Hu Q‐Y, Usera A, Robinson Z, Allan M, Singh A, Imase H, Cobb J, Zhai H, Quinn D et al. (2015) Sugar‐protein connectivity impacts on the immunogenicity of site‐selective Salmonella O‐antigen glycoconjugate vaccines. Angew Chemie Int Ed 54, 13198–13203. PubMed PMC
Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, Gold DS, Heinsohn HG & Murray CJ (2011) Microscale to manufacturing scale‐up of cell‐free cytokine production‐a new approach for shortening protein production development timelines. Biotechnol Bioeng 108, 1570–1578. PubMed PMC
Langdon RH, Cuccui J & Wren BW (2009) N‐linked glycosylation in bacteria: an unexpected application. Future Microbiol 4, 401–412. PubMed
Wacker M, Linton D, Hitchen PG, Nita‐Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW et al. (2002) N‐linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli . Science 298, 1790–1793. PubMed
Wacker M, Wang L, Kowarik M, Dowd M, Lipowsky G, Faridmoayer A, Shields K, Park S, Alaimo C, Kelley KA et al. (2013) Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli . J Infect Dis 209, 1551–1561. PubMed PMC
Harding CM, Nasr MA, Scott NE, Goyette‐Desjardins G, Nothaft H, Mayer AE, Chavez SM, Huynh JP, Kinsella RL, Szymanski CM et al. (2019) A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a Host. Nat Commun 10, 891. PubMed PMC
Feldman MF, Mayer Bridwell AE, Scott NE, Vinogradov E, McKee SR, Chavez SM, Twentyman J, Stallings CL, Rosen DA & Harding CM (2019) A Promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae . Proc Natl Acad Sci USA 116, 18655–18663. PubMed PMC
Hatz CF, Bally B, Rohrer S, Steffen R, Kramme S, Siegrist C‐A, Wacker M, Alaimo C & Fonck VG (2015) Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: a single blind, partially randomized phase I study. Vaccine 33, 4594–4601. PubMed
Huttner A, Hatz C, van den Dobbelsteen G, Abbanat D, Hornacek A, Frölich R, Dreyer AM, Martin P, Davies T, Fae K et al. (2017) Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single‐blind, placebo‐controlled phase 1b trial. Lancet Infect Dis 17, 528–537. PubMed
Chu RS, McCool T, Greenspan NS, Schreiber JR & Harding CV (2000) CpG oligodeoxynucleotides act as adjuvants for pneumococcal polysaccharide‐protein conjugate vaccines and enhance antipolysaccharide immunoglobulin G2a (IgG2a) and IgG3 antibodies. Infect Immun 68, 1450–1456. PubMed PMC
von Hunolstein C, Mariotti S, Teloni R, Alfarone G, Romagnoli G, Orefici G & Nisini R (2001) The adjuvant effect of synthetic oligodeoxynucleotide containing CpG motif converts the anti‐Haemophilus influenzae type b glycoconjugates into efficient anti‐polysaccharide and anti‐carrier polyvalent vaccines. Vaccine 19, 3058–3066. PubMed
Chatzikleanthous D, Schmidt ST, Buffi G, Paciello I, Cunliffe R, Carboni F, Romano MR, O’Hagan DT, D’Oro U, Woods S et al. (2020) Design of a novel vaccine nanotechnology‐based delivery system comprising CpGODN‐protein conjugate anchored to liposomes. J Control Release 323, 125–137. PubMed
Liao G, Zhou Z, Suryawanshi S, Mondal MA & Guo Z (2016) Fully synthetic self‐adjuvanting α‐2,9‐oligosialic acid based conjugate vaccines against group C meningitis. ACS Cent Sci 2, 210–218. PubMed PMC
Wang L, Feng S, Wang S, Li H, Guo Z & Gu G (2017) Synthesis and Immunological comparison of differently linked lipoarabinomannan oligosaccharide‐monophosphoryl lipid A conjugates as antituberculosis vaccines. J Org Chem 82, 12085–12096. PubMed
Deng S, Bai L, Reboulet R, Matthew R, Engler DA, Teyton L, Bendelac A & Savage PB (2014) A peptide‐free, liposome‐based oligosaccharide vaccine, adjuvanted with a natural killer T cell antigen, generates robust antibody responses in vivo . Chem Sci 5, 1437–1441. PubMed PMC
Hassane FS, Phalipon A, Tanguy M, Guerreiro C, Bélot F, Frisch B, Mulard LA & Schuber F (2009) Rational design and immunogenicity of liposome‐based diepitope constructs: application to synthetic oligosaccharides mimicking the Shigella flexneri 2a O‐antigen. Vaccine 27, 5419–5426. PubMed
Barel L‐A & Mulard LA (2019) Classical and novel strategies to develop a Shigella glycoconjugate vaccine: from concept to efficacy in human. Hum Vaccin Immunother 15, 1338–1356. PubMed PMC
Perepelov AV, Shekht ME, Liu B, Shevelev SD, Ledov VA, Senchenkova SN, L'vov VL, Shashkov AS, Feng L, Aparin PG et al.(2012) Shigella flexneri O‐antigens revisited: final elucidation of the O‐acetylation profiles and a survey of the O‐antigen structure diversity. FEMS Immunol Med Microbiol 66, 201–210. PubMed
Jones CH, Zhang G, Nayerhoda R, Beitelshees M, Hill A, Rostami P, Li Y, Davidson BA, Knight P & Pfeifer BA (2017) Comprehensive vaccine design for commensal disease progression. Sci Adv 3, e1701797. PubMed PMC
Hill AB, Beitelshees M, Nayerhoda R, Pfeifer BA & Jones CH (2018) Engineering a next‐generation glycoconjugate‐like Streptococcus pneumoniae vaccine. ACS Infect Dis 4, 1553–1563. PubMed PMC
Safari D, Marradi M, Chiodo F, Dekker H, Shan Y, Adamo R, Oscarson S, Rijkers G, Lahmann M, Kamerling J et al. (2012) Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine 7, 651–662. PubMed
Vetro M, Safari D, Fallarini S, Salsabila K, Lahmann M, Penadés S, Lay L, Marradi M & Compostella F (2016) Preparation and immunogenicity of gold glyco‐nanoparticles as antipneumococcal vaccine model. Nanomedicine 12, 13–23. PubMed
Polonskaya Z, Deng S, Sarkar A, Kain L, Comellas‐Aragones M, McKay CS, Kaczanowska K, Holt M, McBride R, Palomo V et al. (2017) T cells control the generation of nanomolar‐affinity anti‐glycan antibodies. J Clin Invest 127, 1491–1504. PubMed PMC
Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, Kaufmann DE, McElrath MJ, Nussenzweig MC, Pulendran B et al. (2012) A blueprint for HIV vaccine discovery. Cell Host Microbe 12, 396–407. PubMed PMC
Barouch DH, Tomaka FL, Wegmann F, Stieh DJ, Alter G, Robb ML, Michael NL, Peter L, Nkolola JP, Borducchi EN et al. (2018) Evaluation of a mosaic HIV‐1 vaccine in a multicentre, randomised, double‐blind, placebo‐controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13–19). Lancet 392, 232–243. PubMed PMC
Burton DR & Mascola JR (2015) Antibody responses to envelope glycoproteins in HIV‐1 Infection. Nat Immunol 16, 571–576. PubMed PMC
Berndsen ZT, Chakraborty S, Wang X, Cottrell CA, Torres JL, Diedrich JK, López CA, Yates JR, van Gils MJ, Paulson JC et al. (2020) Visualization of the HIV‐1 Env glycan shield across scales. Proc Natl Acad Sci USA 117, 28014–28025. PubMed PMC
Crispin M, Ward AB & Wilson IA (2018) Structure and immune recognition of the HIV glycan shield. Annu Rev Biophys 47, 499–523. PubMed PMC
Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, Rupert P, Correnti C, Kalyuzhniy O, Vittal V et al. (2014) Proof of principle for epitope‐focused vaccine design. Nature 507, 201–206. PubMed PMC
Doores KJ & Burton DR (2010) Variable loop glycan dependency of the broad and potent HIV‐1‐neutralizing antibodies PG9 and PG16. J Virol 84, 10510–10521. PubMed PMC
Bonsignori M, Hwang K‐K, Chen X, Tsao C‐Y, Morris L, Gray E, Marshall DJ, Crump JA, Kapiga SH, Sam NE et al. (2011) Analysis of a clonal lineage of HIV‐1 envelope V2/V3 conformational epitope‐specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J Virol 85, 9998–10009. PubMed PMC
McLellan JS, Pancera M, Carrico C, Gorman J, Julien J‐P, Khayat R, Louder R, Pejchal R, Sastry M, Dai K et al. (2011) Structure of HIV‐1 Gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343. PubMed PMC
Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien J‐P, Wang S‐K, Ramos A, Chan‐Hui P‐Y, Moyle M et al. (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470. PubMed PMC
Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P‐S, Wang S‐K, Stanfield RL, Julien J‐P, Ramos A, Crispin M et al. (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–1103. PubMed PMC
Huang C, Tang M, Zhang M‐Y, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA et al. (2005) Structure of a V3‐containing HIV‐1 Gp120 core. Science 310, 1025–1028. PubMed PMC
Burton DR & Hangartner L (2016) Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu Rev Immunol 34, 635–659. PubMed PMC
Wang Z, Qin C, Hu J, Guo X & Yin J (2016) Recent advances in synthetic carbohydrate‐based human immunodeficiency virus vaccines. Virol Sin 31, 110–117. PubMed PMC
Li H, Li B, Song H, Breydo L, Baskakov IV & Wang L‐X (2005) Chemoenzymatic synthesis of HIV‐1 V3 glycopeptides carrying two N‐glycans and effects of glycosylation on the peptide domain. J Org Chem 70, 9990–9996. PubMed
Cai H, Orwenyo J, Giddens JP, Yang Q, Zhang R, LaBranche CC, Montefiori DC & Wang L‐X (2017) Synthetic three‐component HIV‐1 V3 glycopeptide immunogens induce glycan‐dependent antibody responses. Cell Chem Biol 24, 1513–1522. PubMed PMC
Sok D, Doores KJ, Briney B, Le KM, Saye‐Francisco KL, Ramos A, Kulp DW, Julien J‐P, Menis S, Wickramasinghe L et al. (2014) Promiscuous glycan site recognition by antibodies to the high‐mannose patch of Gp120 broadens neutralization of HIV. Sci Transl Med 6, 236ra63. PubMed PMC
Cai H, Zhang RS, Orwenyo J, Giddens J, Yang Q, Labranche CC, Montefiori DC & Wang LX (2018) Synthetic HIV V3 glycopeptide immunogen carrying a N334 N‐glycan induces glycan‐dependent antibodies with promiscuous site recognition. J Med Chem 61, 10116–10125. PubMed PMC
Alam SM, Dennison SM, Aussedat B, Vohra Y, Park PK, Fernández‐Tejada A, Stewart S, Jaeger FH, Anasti K, Blinn JH et al. (2013) Recognition of synthetic glycopeptides by HIV‐1 broadly neutralizing antibodies and their unmutated ancestors. Proc Natl Acad Sci USA 110, 18214–18219. PubMed PMC
Amin MN, McLellan JS, Huang W, Orwenyo J, Burton DR, Koff WC, Kwong PD & Wang L‐X (2013) Synthetic glycopeptides reveal the glycan specificity of HIV‐neutralizing antibodies. Nat Chem Biol 9, 521–526. PubMed PMC
Shivatare SS, Chang S‐H, Tsai T‐I, Ren C‐T, Chuang H‐Y, Hsu L, Lin C‐W, Li S‐T, Wu C‐Y & Wong C‐H (2013) Efficient convergent synthesis of Bi‐, Tri‐, and tetra‐antennary complex type N‐glycans and their HIV‐1 antigenicity. J Am Chem Soc 135, 15382–15391. PubMed
Horiya S, MacPherson IS & Krauss IJ (2014) Recent strategies targeting HIV glycans in vaccine design. Nat Chem Biol 10, 990–999. PubMed PMC
Behrens A‐J, Seabright G & Crispin M (2017) Targeting glycans of HIV envelope glycoproteins for vaccine design. Chem Biol Glycoproteins 2017, 300–357.
Aussedat B, Vohra Y, Park PK, Fernández‐Tejada A, Alam SM, Dennison SM, Jaeger FH, Anasti K, Stewart S, Blinn JH et al. (2013) Chemical synthesis of highly congested Gp120 V1V2 N‐glycopeptide antigens for potential HIV‐1‐directed vaccines. J Am Chem Soc 135, 13113–13120. PubMed PMC
Ni J, Song H, Wang Y, Stamatos NM & Wang L‐X (2006) Toward a carbohydrate‐based HIV‐1 vaccine: synthesis and immunological studies of oligomannose‐containing glycoconjugates. Bioconjug Chem 17, 493–500. PubMed
Joyce JG, Krauss IJ, Song HC, Opalka DW, Grimm KM, Nahas DD, Esser MT, Hrin R, Feng M, Dudkin VY et al. (2008) An oligosaccharide‐based HIV‐1 2G12 mimotope vaccine induces carbohydrate‐specific antibodies that fail to neutralize HIV‐1 virions. Proc Natl Acad Sci USA 105, 15684–15689. PubMed PMC
Astronomo RD, Lee H‐K, Scanlan CN, Pantophlet R, Huang C‐Y, Wilson IA, Blixt O, Dwek RA, Wong C‐H & Burton DR (2008) A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of Gp120. J Virol 82, 6359–6368. PubMed PMC
Astronomo RD, Kaltgrad E, Udit AK, Wang S‐K, Doores KJ, Huang C‐Y, Pantophlet R, Paulson JC, Wong C‐H, Finn MG et al. (2010) Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem Biol 17, 357–370. PubMed PMC
Kabanova A, Adamo R, Proietti D, Berti F, Tontini M, Rappuoli R & Costantino P (2010) Preparation, characterization and immunogenicity of HIV‐1 related high‐mannose oligosaccharides‐CRM197 glycoconjugates. Glycoconj J 27, 501–513. PubMed
Nguyen DN, Xu B, Stanfield RL, Bailey JK, Horiya S, Temme JS, Leon DR, LaBranche CC, Montefiori DC, Costello CE et al. (2019) Oligomannose glycopeptide conjugates elicit antibodies targeting the glycan core rather than its extremities. ACS Cent Sci 5, 237–249. PubMed PMC
Marradi M, Di Gianvincenzo P, Enríquez‐Navas PM, Martínez‐Ávila OM, Chiodo F, Yuste E, Angulo J & Penadés S (2011) Gold nanoparticles coated with oligomannosides of HIV‐1 glycoprotein Gp120 mimic the carbohydrate epitope of antibody 2G12. J Mol Biol 410, 798–810. PubMed
Pantophlet R, Trattnig N, Murrell S, Lu N, Chau D, Rempel C, Wilson IA & Kosma P (2017) Bacterially derived synthetic mimetics of mammalian oligomannose prime antibody responses that neutralize HIV infectivity. Nat Commun 8, 1601. PubMed PMC
Trattnig N, Mayrhofer P, Kunert R, Mach L, Pantophlet R & Kosma P (2019) Comparative antigenicity of thiourea and adipic amide linked neoglycoconjugates containing modified oligomannose epitopes for the carbohydrate‐specific anti‐HIV antibody 2G12. Bioconjug Chem 30, 70–82. PubMed PMC
Tokatlian T, Read BJ, Jones CA, Kulp DW, Menis S, Chang JYH, Steichen JM, Kumari S, Allen JD, Dane EL et al. (2019) Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363, 649–654. PubMed PMC
Climent N, García I, Marradi M, Chiodo F, Miralles L, Maleno MJ, Gatell JM, García F, Penadés S & Plana M (2018) Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV‐peptides and mannosides enhance HIV‐specific T cell responses. Nanomedicine 14, 339–351. PubMed
Ahmad S, Zamry AA, Tan H‐TT, Wong KK, Lim J & Mohamud R (2017) Targeting dendritic cells through gold nanoparticles: a review on the cellular uptake and subsequent immunological properties. Mol Immunol 91, 123–133. PubMed
Dykman LA & Khlebtsov NG (2017) Immunological properties of gold nanoparticles. Chem Sci 8, 1719–1735. PubMed PMC
Sanders RW & Moore JP (2017) Native‐like Env trimers as a platform for HIV‐1 vaccine design. Immunol Rev 275, 161–182. PubMed PMC
Mulder AM, Carragher B, Towne V, Meng Y, Wang Y, Dieter L, Potter CS, Washabaugh MW, Sitrin RD & Zhao Q (2012) Toolbox for non‐intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine. PLoS One 7, e33235. PubMed PMC
Zhao Q, Potter CS, Carragher B, Lander G, Sworen J, Towne V, Abraham D, Duncan P, Washabaugh MW & Sitrin RD (2014) Characterization of virus‐like particles in GARDASIL® by Cryo transmission electron microscopy. Hum Vaccin Immunother 10, 734–739. PubMed PMC
Ingale J, Stano A, Guenaga J, Sharma SK, Nemazee D, Zwick MB & Wyatt RT (2016) High‐density array of well‐ordered HIV‐1 spikes on synthetic liposomal nanoparticles efficiently activate B cells. Cell Rep 15, 1986–1999. PubMed PMC
Ota T, Doyle‐Cooper C, Cooper AB, Doores KJ, Aoki‐Ota M, Le K, Schief WR, Wyatt RT, Burton DR & Nemazee D (2013) B cells from knock‐in mice expressing broadly neutralizing HIV antibody B12 carry an innocuous B cell receptor responsive to HIV vaccine candidates. J Immunol 191, 3179–3185. PubMed PMC
Wilson JT (2019) A sweeter approach to vaccine design. Science (80‐. ) 363, 584–585. PubMed
Wei M‐M, Wang Y‐S & Ye X‐S (2018) Carbohydrate‐based vaccines for oncotherapy. Med Res Rev 38, 1003–1026. PubMed
Marcos NT, Bennett EP, Gomes J, Magalhaes A, Gomes C, David L, Dar I, Jeanneau C, DeFrees S, Krustrup D et al. (2011) ST6GalNAc‐I controls expression of Sialyl‐Tn antigen in gastrointestinal tissues. Front Biosci (Elite Ed) 3, 1443–1455. PubMed
Wolfert MA & Boons G‐J (2013) Adaptive immune activation: glycosylation does matter. Nat Chem Biol 9, 776–784. PubMed PMC
Barkeer S, Chugh S, Batra SK & Ponnusamy MP (2018) Glycosylation of cancer stem cells: function in stemness, tumorigenesis, and metastasis. Neoplasia 20, 813–825. PubMed PMC
Ragupathi G (1996) Carbohydrate antigens as targets for active specific immunotherapy. Cancer Immunol Immunother 43, 152–157. PubMed
Slovin SF, Keding SJ & Ragupathi G (2005) Carbohydrate vaccines as immunotherapy for cancer. Immunol Cell Biol 83, 418–428. PubMed
Huang Y‐L & Wu C‐Y (2010) Carbohydrate‐based vaccines: challenges and opportunities. Expert Rev Vaccines 9, 1257–1274. PubMed
Yin Z & Huang X (2012) Recent development in carbohydrate based anti‐cancer vaccines. J Carbohydr Chem 31, 143–186. PubMed PMC
Soliman C, Yuriev E & Ramsland PA (2017) Antibody recognition of aberrant glycosylation on the surface of cancer cells. Curr Opin Struct Biol 44, 1–8. PubMed
Wang Q & Guo Z (2011) Synthetic and immunological studies of STn derivatives carrying 5‐N‐(p‐substituted phenylacetyl)sialic acid for the development of effective cancer vaccines. ACS Med Chem Lett 2, 373–378. PubMed PMC
Hakomori S (1999) Antigen structure and genetic basis of histo‐blood groups A, B and O: their changes associated with human cancer 11 blood group phenotypes A, B, O and Lewis (Le) are shown without Italics. Their alleles are shown with italics: A, B, O, Le, Le. Similarly. Ph. Biochim Biophys Acta 1473, 247–266. PubMed
Hakomori S (2001) Tumor‐associated carbohydrate antigens defining tumor malignancy: basis for development of anti‐cancer vaccines. Adv Exp Med Biol 491, 369–402. PubMed
Glinsky GV, Ivanova AB, Welsh J & McClelland M (2000) The role of blood group antigens in malignant progression, apoptosis resistance, and metastatic behavior. Transfus Med Rev 14, 326–350. PubMed
Chang W‐W, Lee CH, Lee P, Lin J, Hsu C‐W, Hung J‐T, Lin J‐J, Yu J‐C, Shao L, Yu J et al. (2008) Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in globo H synthesis. Proc Natl Acad Sci USA 105, 11667–11672. PubMed PMC
Heimburg‐Molinaro J, Lum M, Vijay G, Jain M, Almogren A & Rittenhouse‐Olson K (2011) Cancer vaccines and carbohydrate epitopes. Vaccine 29, 8802–8826. PubMed PMC
Lou Y‐W, Wang P‐Y, Yeh S‐C, Chuang P‐K, Li S‐T, Wu C‐Y, Khoo K‐H, Hsiao M, Hsu T‐L & Wong C‐H (2014) Stage‐specific embryonic antigen‐4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci USA 111, 2482–2487. PubMed PMC
Livingston PO, Zhang S & Lloyd KO (1997) Carbohydrate vaccines that induce antibodies against cancer. 1. Rationale. Cancer Immunol Immunother 45, 1–9. PubMed PMC
Groux‐Degroote S, Guérardel Y & Delannoy P (2017) Gangliosides: structures, biosynthesis, analysis, and roles in cancer. ChemBioChem 18, 1146–1154. PubMed
Glavey SV, Huynh D, Reagan MR, Manier S, Moschetta M, Kawano Y, Roccaro AM, Ghobrial IM, Joshi L & O’Dwyer ME (2015) The cancer glycome: carbohydrates as mediators of metastasis. Blood Rev 29, 269–279. PubMed
Mereiter S, Balmaña M, Campos D, Gomes J & Reis CA (2019) Glycosylation in the era of cancer‐targeted therapy: where are we heading? Cancer Cell 36, 6–16. PubMed
Marcos NT, Pinho S, Grandela C, Cruz A, Samyn‐Petit B, Harduin‐Lepers A, Almeida R, Silva F, Morais V, Costa J et al. (2004) Role of the human ST6GalNAc‐I and ST6GalNAc‐II in the synthesis of the cancer‐associated Sialyl‐Tn antigen. Cancer Res 64, 7050–7057. PubMed
Seidenfaden R, Krauter A, Schertzinger F, Gerardy‐Schahn R & Hildebrandt H (2003) Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol 23, 5908–5918. PubMed PMC
Falconer RA, Errington RJ, Shnyder SD, Smith PJ & Patterson LH (2012) Polysialyltransferase: a new target in metastatic cancer. Curr Cancer Drug Targets 12, 925–939. PubMed
Helling F, Shang A, Calves M, Zhang S, Ren S, Yu RK, Oettgen HF & Livingston PO (1994) GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res 54, 197–203. PubMed
Kagan E, Ragupathi G, Yi SS, Reis CA, Gildersleeve J, Kahne D, Clausen H, Danishefsky SJ & Livingston PO (2005) Comparison of antigen constructs and carrier molecules for augmenting the immunogenicity of the monosaccharide epithelial cancer antigen Tn. Cancer Immunol Immunother 54, 424–430. PubMed PMC
Hevey R & Ling C‐C (2012) Recent advances in developing synthetic carbohydrate‐based vaccines for cancer immunotherapies. Future Med Chem 4, 545–584. PubMed
Hakomori S & Zhang Y (1997) Glycosphingolipid antigens and cancer therapy. Chem Biol 4, 97–104. PubMed
Slovin SF, Ragupathi G, Fernandez C, Diani M, Jefferson MP, Wilton A, Kelly WK, Morris M, Solit D, Clausen H et al. (2007) A polyvalent vaccine for high‐risk prostate patients: “are more antigens better?” Cancer Immunol Immunother 56, 1921–1930. PubMed PMC
Chapman PB, Wu D, Ragupathi G, Lu S, Williams L, Hwu W‐J, Johnson D & Livingston PO (2004) Sequential immunization of melanoma patients with GD3 ganglioside vaccine and anti‐idiotypic monoclonal antibody that mimics GD3 ganglioside. Clin Cancer Res 10, 4717–4723. PubMed
Chapman PB, Morrisey D, Panageas KS, Williams L, Lewis JJ, Israel RJ, Hamilton WB & Livingston PO (2000) Vaccination with a bivalent GM2 and GD2 ganglioside conjugate vaccine: a trial comparing doses of GD2‐keyhole limpet hemocyanin. Clin Cancer Res 6, 4658–4662. PubMed
Sabbatini PJ, Ragupathi G, Hood C, Aghajanian CA, Juretzka M, Iasonos A, Hensley ML, Spassova MK, Ouerfelli O, Spriggs DR et al. (2007) Pilot study of a heptavalent vaccine‐keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clin Cancer Res 13, 4170–4177. PubMed
Kudryashov V, Kim HM, Ragupathi G, Danishefsky SJ, Livingston PO & Lloyd KO (1998) Immunogenicity of synthetic conjugates of Lewisy oligosaccharide with proteins in mice: towards the design of anticancer vaccines. Cancer Immunol Immunother 45, 281–286. PubMed PMC
Danishefsky SJ & Allen JR (2000) From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate‐based anticancer vaccines. Angew Chemie Int Ed 39, 836–863. PubMed
Huang Y‐L, Hung J‐T, Cheung SKC, Lee H‐Y, Chu K‐C, Li S‐T, Lin Y‐C, Ren C‐T, Cheng T‐JR, Hsu T‐L et al. (2013) Carbohydrate‐based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci USA 110, 2517–2522. PubMed PMC
Ragupathi G, Koide F, Livingston PO, Cho YS, Endo A, Wan Q, Spassova MK, Keding SJ, Allen J, Ouerfelli O et al. (2006) Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates. J Am Chem Soc 128, 2715–2725. PubMed
Nores GA, Dohi T, Taniguchi M & Hakomori S (1987) Density‐dependent recognition of cell surface GM3 by a certain anti‐melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor‐associated antigen and immunogen. J Immunol 139, 3171–3176. PubMed
Ragupathi G, Damani P, Srivastava G, Srivastava O, Sucheck SJ, Ichikawa Y & Livingston PO (2009) Synthesis of Sialyl Lewisa (SLea, CA19‐9) and construction of an immunogenic SLea vaccine. Cancer Immunol Immunother 58, 1397–1405. PubMed PMC
Buskas T, Li Y & Boons G‐J (2004) The immunogenicity of the tumor‐associated antigen Lewisy may be suppressed by a bifunctional cross‐linker required for coupling to a carrier protein. Chemistry 10, 3517–3524. PubMed
Lee H‐Y, Chen C‐Y, Tsai T‐I, Li S‐T, Lin K‐H, Cheng Y‐Y, Ren C‐T, Cheng T‐JR, Wu C‐Y & Wong C‐H (2014) Immunogenicity study of globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. J Am Chem Soc 136, 16844–16853. PubMed
Yin Z, Chowdhury S, McKay C, Baniel C, Wright WS, Bentley P, Kaczanowska K, Gildersleeve JC, Finn MG, BenMohamed L et al. (2015) Significant impact of immunogen design on the diversity of antibodies generated by carbohydrate‐based anticancer vaccine. ACS Chem Biol 10, 2364–2372. PubMed PMC
Kaur S, Kumar S, Momi N, Sasson AR & Batra SK (2013) Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 10, 607–620. PubMed PMC
Duarte HO, Freitas D, Gomes C, Gomes J, Magalhães A & Reis CA (2016) Mucin‐type O‐glycosylation in gastric carcinogenesis. Biomolecules 6, 33. PubMed PMC
Magalhães A, Marcos‐Pinto R, Nairn AV, Dela RM, Ferreira RM, Junqueira‐Neto S, Freitas D, Gomes J, Oliveira P, Santos MR et al. (2015) Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochim Biophys Acta 1852, 1928–1939. PubMed PMC
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA & Tabak LA (2012) Control of mucin‐type O‐glycosylation: a classification of the polypeptide GalNAc‐transferase gene family. Glycobiology 22, 736–756. PubMed PMC
Gomes J, Marcos NT, Berois N, Osinaga E, Magalhães A, Pinto‐de‐Sousa J, Almeida R, Gärtner F & Reis CA (2009) Expression of UDP‐N‐Acetyl‐D‐galactosamine: polypeptide N‐acetylgalactosaminyltransferase‐6 in gastric mucosa, intestinal metaplasia, and gastric carcinoma. J Histochem Cytochem 57, 79–86. PubMed PMC
Ju T & Cummings RD (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3‐galactosyltransferase. Proc Natl Acad Sci USA 99, 16613–16618. PubMed PMC
Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, He M & Cummings RD (2010) Cosmc is an essential chaperone for correct protein O‐glycosylation. Proc Natl Acad Sci USA 107, 9228–9233. PubMed PMC
Pinho SS & Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15, 540–555. PubMed
Bhatia R, Gautam SK, Cannon A, Thompson C, Hall BR, Aithal A, Banerjee K, Jain M, Solheim JC, Kumar S et al. (2019) Cancer‐associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev 38, 223–236. PubMed PMC
Apostolopoulos V, Hu XF, Pouniotis DS & Xing PX (2004) MUC1: a molecule of many talents. Curr Trends Immunol 12, 629–639.
Nath S & Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20, 332–342. PubMed PMC
Wilson RM & Danishefsky SJ (2013) A vision for vaccines built from fully synthetic tumor‐associated antigens: from the laboratory to the clinic. J Am Chem Soc 135, 14462–14472. PubMed PMC
Martinez‐Sàez N, Peregrina JM & Corzana F (2017) Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1‐glycopeptides. Chem Soc Rev 46, 7154–7175. PubMed
Cai H, Huang Z‐H, Shi L, Sun Z‐Y, Zhao Y‐F, Kunz H & Li Y‐M (2012) Variation of the glycosylation pattern in MUC1 glycopeptide BSA vaccines and its influence on the immune response. Angew Chemie Int Ed 51, 1719–1723. PubMed
Zhu J, Wan Q, Lee D, Yang G, Spassova MK, Ouerfelli O, Ragupathi G, Damani P, Livingston PO & Danishefsky SJ (2009) From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. J Am Chem Soc 131, 9298–9303. PubMed PMC
O’Cearbhaill RE, Ragupathi G, Zhu J, Wan Q, Mironov S, Yang G, Spassova MK, Iasonos A, Kravetz S, Ouerfelli O et al. (2016) A Phase I study of unimolecular pentavalent (Globo‐H‐GM2‐STn‐TF‐Tn) immunization of patients with epithelial ovarian, fallopian tube, or peritoneal cancer in first remission. Cancers (Basel) 8, 46. PubMed PMC
Cremer G‐A, Bureaud N, Piller V, Kunz H, Piller F & Delmas AF (2006) Synthesis and biological evaluation of a multiantigenic Tn/TF‐containing glycopeptide mimic of the tumor‐related MUC1 glycoprotein. ChemMedChem 1, 965–968. PubMed
Grigalevicius S, Chierici S, Renaudet O, Lo‐Man R, Dériaud E, Leclerc C & Dumy P (2005) Chemoselective assembly and immunological evaluation of multiepitopic glycoconjugates bearing clustered Tn antigen as synthetic anticancer vaccines. Bioconjug Chem 16, 1149–1159. PubMed
Toyokuni T, Hakomori S & Singhal AK (1994) Synthetic carbohydrate vaccines: synthesis and immunogenicity of Tn antigen conjugates. Bioorg Med Chem 2, 1119–1132. PubMed
Bay S, Lo‐Man R, Osinaga E, Nakada H, Lecler C & Cantacuzene D (1997) Preparation of a multiple antigen glycopeptide (MAG) carrying the Tn antigen. A possible approach to a synthetic carbohydrate vaccine. J Pept Res 49, 620–625. PubMed
Keil S, Claus C, Dippold W & Kunz H (2001) Towards the development of antitumor vaccines: a synthetic conjugate of a tumor‐associated MUC1 glycopeptide antigen and a tetanus toxin epitope. Angew Chemie Int Ed 40, 366–369. PubMed
Palitzsch B, Gaidzik N, Stergiou N, Stahn S, Hartmann S, Gerlitzki B, Teusch N, Flemming P, Schmitt E & Kunz H (2016) A synthetic glycopeptide vaccine for the induction of a monoclonal antibody that differentiates between normal and tumor mammary cells and enables the diagnosis of human pancreatic cancer. Angew Chemie Int Ed 55, 2894–2898. PubMed
Pifferi C, Berthet N & Renaudet O (2017) Cyclopeptide scaffolds in carbohydrate‐based synthetic vaccines. Biomater Sci 5, 953–965. PubMed
Bettahi I, Dasgupta G, Renaudet O, Chentoufi AA, Zhang X, Carpenter D, Yoon S, Dumy P & BenMohamed L (2009) Antitumor activity of a self‐adjuvanting glyco‐lipopeptide vaccine bearing B cell, CD4+ and CD8+ T cell epitopes. Cancer Immunol Immunother 58, 187. PubMed PMC
Renaudet O, Dasgupta G, Bettahi I, Shi A, Nesburn AB, Dumy P & BenMohamed L (2010) Linear and branched glyco‐lipopeptide vaccines follow distinct cross‐presentation pathways and generate different magnitudes of antitumor immunity. PLoS One 5, e11216. PubMed PMC
Renaudet O, BenMohamed L, Dasgupta G, Bettahi I & Dumy P (2008) Towards a self‐adjuvanting multivalent B and T cell epitope containing synthetic glycolipopeptide cancer vaccine. ChemMedChem 3, 737–741. PubMed
Abdel‐Aal A‐BM, El‐Naggar D, Zaman M, Batzloff M & Toth I (2012) Design of fully synthetic, self‐adjuvanting vaccine incorporating the tumor‐associated carbohydrate Tn antigen and lipoamino acid‐based toll‐like receptor 2 ligand. J Med Chem 55, 6968–6974. PubMed
Yin Z, Wu X, Kaczanowska K, Sungsuwan S, Aragones MC, Pett C, Yu J, Baniel C, Westerlind U, Finn MG et al. (2018) Antitumor humoral and T cell responses by mucin‐1 conjugates of bacteriophage Qβ in wild‐type mice. ACS Chem Biol 13, 1668–1676. PubMed PMC
Wu X, Yin Z, McKay C, Pett C, Yu J, Schorlemer M, Gohl T, Sungsuwan S, Ramadan S, Baniel C et al. (2018) Protective epitope discovery and design of MUC1‐based vaccine for effective tumor protections in immunotolerant mice. J Am Chem Soc 140, 16596–16609. PubMed PMC
Shi M, Kleski KA, Trabbic KR, Bourgault J‐P & Andreana PR (2016) Sialyl‐Tn polysaccharide A1 as an entirely carbohydrate immunogen: synthesis and immunological evaluation. J Am Chem Soc 138, 14264–14272. PubMed
De Silva RA, Wang Q, Chidley T, Appulage DK & Andreana PR (2009) Immunological response from an entirely carbohydrate antigen: design of synthetic vaccines based on Tn−PS A1 conjugates. J Am Chem Soc 131, 9622–9623. PubMed
Avci FY & Kasper DL (2010) How bacterial carbohydrates influence the adaptive immune system. Annu Rev Immunol 28, 107–130. PubMed
Avci FY, Li X, Tsuji M & Kasper DL (2013) Carbohydrates and T cells: a sweet twosome. Semin Immunol 25, 146–151. PubMed PMC
Cobb BA & Kasper DL (2008) Characteristics of carbohydrate antigen binding to the presentation protein HLA‐DR. Glycobiology 18, 707–718. PubMed PMC
Cobb BA, Wang Q, Tzianabos AO & Kasper DL (2004) Polysaccharide processing and presentation by the MHCII pathway. Cell 117, 677–687. PubMed PMC
Stefan KL, Kim MV, Iwasaki A & Kasper DL (2020) Commensal microbiota modulation of natural resistance to virus infection. Cell 183, 1312–1324.e10. PubMed PMC
De Silva RA, Appulage DK, Pietraszkiewicz H, Bobbitt KR, Media J, Shaw J, Valeriote FA & Andreana PR (2012) The entirely carbohydrate immunogen Tn‐PS A1 induces a cancer cell selective immune response and cytokine IL‐17. Cancer Immunol Immunother 61, 581–585. PubMed PMC
Mazmanian SK, Liu CH, Tzianabos AO & Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118. PubMed
Wang Q, McLoughlin RM, Cobb BA, Charrel‐Dennis M, Zaleski KJ, Golenbock D, Tzianabos AO & Kasper DL (2006) A bacterial carbohydrate links innate and adaptive responses through toll‐like receptor 2. J Exp Med 203, 2853–2863. PubMed PMC
Trabbic KR, Kleski KA, Shi M, Bourgault J‐P, Prendergast JM, Dransfield DT & Andreana PR (2018) Production of a mouse monoclonal IgM antibody that targets the carbohydrate thomsen‐nouveau cancer antigen resulting in in vivo and in vitro tumor killing. Cancer Immunol Immunother 67, 1437–1447. PubMed PMC
Trabbic KR, Bourgault J‐P, Shi M, Clark M & Andreana PR (2016) Immunological evaluation of the entirely carbohydrate‐based Thomsen‐Friedenreich – PS B conjugate. Org Biomol Chem 14, 3350–3355. PubMed
Eradi P, Ghosh S & Andreana PR (2018) Total synthesis of zwitterionic tetrasaccharide repeating unit from Bacteroides fragilis ATCC 25285/NCTC 9343 capsular polysaccharide PS A1 with alternating charges on adjacent monosaccharides. Org Lett 20, 4526–4530. PubMed
Beatty GL & Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21, 687–692. PubMed PMC
Song C, Zheng X‐J, Liu C‐C, Zhou Y & Ye X‐S (2017) A cancer vaccine based on fluorine‐modified sialyl‐Tn induces robust immune responses in a murine model. Oncotarget 8, 47330–47343. PubMed PMC
Hoffmann‐Röder A, Kaiser A, Wagner S, Gaidzik N, Kowalczyk D, Westerlind U, Gerlitzki B, Schmitt E & Kunz H (2010) Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen‐Friedenreich antigen and a fluorine‐substituted analogue. Angew Chemie Int Ed 49, 8498–8503. PubMed
Martínez‐Sáez N, Supekar NT, Wolfert MA, Bermejo IA, Hurtado‐Guerrero R, Asensio JL, Jiménez‐Barbero J, Busto JH, Avenoza A, Boons GJ et al. (2016) Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chem Sci 7, 2294–2301. PubMed PMC
Compañón I, Guerreiro A, Mangini V, Castro‐López J, Escudero‐Casao M, Avenoza A, Busto JH, Castillón S, Jiménez‐Barbero J, Asensio JL et al. (2019) Structure‐based design of potent tumor‐associated antigens: modulation of peptide presentation by single‐Atom O/S or O/Se substitutions at the glycosidic linkage. J Am Chem Soc 141, 4063–4072. PubMed
Arcangeli A, Toma L, Contiero L, Crociani O, Legnani L, Lunghi C, Nesti E, Moneti G, Richichi B & Nativi C (2010) Stable GM3 lactone mimetic raises antibodies specific for the antigens expressed on melanoma cells. Bioconjug Chem 21, 1432–1438. PubMed
Richichi B, Comito G, Renaudet O, Fiore M, Marra A, Stecca B, Pasquato L, Chiarugi P & Nativi C (2016) Role of a preorganized scaffold presenting four residues of a GM‐3 lactone mimetic on melanoma progression. ACS Med Chem Lett 7, 28–33. PubMed PMC
Arosio P, Comito G, Orsini F, Lascialfari A, Chiarugi P, Ménard‐Moyon C, Nativi C & Richichi B (2018) Conjugation of a GM3 lactone mimetic on carbon nanotubes enhances the related inhibition of melanoma‐associated metastatic events. Org Biomol Chem 16, 6086–6095. PubMed
Richichi B, Thomas B, Fiore M, Bosco R, Qureshi H, Nativi C, Renaudet O & BenMohamed L (2014) A cancer therapeutic vaccine based on clustered Tn‐antigen mimetics induces strong antibody‐mediated protective immunity. Angew Chem Int Ed Engl 53, 11917–11920. PubMed PMC
Fallarini S, Brittoli A, Fiore M, Lombardi G, Renaudet O, Richichi B & Nativi C (2017) Immunological characterization of a rigid α‐Tn mimetic on murine INKT and human NK Cells. Glycoconj J 34, 553–562. PubMed
Zheng X‐J, Yang F, Zheng M, Huo C‐X, Zhang Y & Ye X‐S (2015) Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Org Biomol Chem 13, 6399–6406. PubMed
Sun S, Zheng X‐J, Huo C‐X, Song C, Li Q & Ye X‐S (2016) Synthesis and evaluation of glycoconjugates comprising N‐Acyl‐modified thomsen‐friedenreich antigens as anticancer vaccines. ChemMedChem 11, 1090–1096. PubMed
Xiao A, Zheng X‐J, Song C, Gui Y, Huo C‐X & Ye X‐S (2016) Synthesis and immunological evaluation of MUC1 glycopeptide conjugates bearing N‐acetyl modified STn derivatives as anticancer vaccines. Org Biomol Chem 14, 7226–7237. PubMed
Yang F, Zheng X‐J, Huo C‐X, Wang Y, Zhang Y & Ye X‐S (2011) Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of STn antigen. ACS Chem Biol 6, 252–259. PubMed
Huo C‐X, Zheng X‐J, Xiao A, Liu C‐C, Sun S, Lv Z & Ye X‐S (2015) Synthetic and immunological studies of N‐acyl modified S‐linked STn derivatives as anticancer vaccine candidates. Org Biomol Chem 13, 3677–3690. PubMed
Shi J, Kantoff PW, Wooster R & Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17, 20–37. PubMed PMC
Venuta A, Wolfram J, Shen H & Ferrari M (2017) Post‐nano strategies for drug delivery: multistage porous silicon microvectors. J Mater Chem B 5, 207–219. PubMed PMC
Shen H, Sun T, Hoang HH, Burchfield JS, Hamilton GF, Mittendorf EA & Ferrari M (2017) Enhancing cancer immunotherapy through nanotechnology‐mediated tumor infiltration and activation of immune cells. Semin Immunol 34, 114–122. PubMed PMC
Park W, Heo Y‐J & Han DK (2018) New opportunities for nanoparticles in cancer immunotherapy. Biomater Res 22, 24. PubMed PMC
Hockl PF, Wolosiuk A, Pérez‐Sáez JM, Bordoni AV, Croci DO, Toum‐Terrones Y, Soler‐Illia GJAA & Rabinovich GA (2016) Glyco‐nano‐oncology: novel therapeutic opportunities by combining small and sweet. Pharmacol Res 109, 45–54. PubMed
Pattni BS, Chupin VV & Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115, 10938–10966. PubMed
Li M, Du C, Guo N, Teng Y, Meng X, Sun H, Li S, Yu P & Galons H (2019) Composition design and medical application of liposomes. Eur J Med Chem 164, 640–653. PubMed
Buskas T, Ingale S & Boons G‐J (2005) Towards a fully synthetic carbohydrate‐based anticancer vaccine: synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor‐associated Tn antigen. Angew Chemie Int Ed 44, 5985–5988. PubMed
Lakshminarayanan V, Thompson P, Wolfert MA, Buskas T, Bradley JM, Pathangey LB, Madsen CS, Cohen PA, Gendler SJ & Boons G‐J (2012) Immune recognition of tumor‐associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci USA 109, 261–266. PubMed PMC
Supekar NT, Lakshminarayanan V, Capicciotti CJ, Sirohiwal A, Madsen CS, Wolfert MA, Cohen PA, Gendler SJ & Boons G‐J (2018) Synthesis and immunological evaluation of a multicomponent cancer vaccine candidate containing a long MUC1 glycopeptide. ChemBioChem 19, 121–125. PubMed PMC
Ingale S, Wolfert MA, Buskas T & Boons G‐J (2009) Increasing the antigenicity of synthetic tumor‐associated carbohydrate antigens by targeting toll‐like receptors. ChemBioChem 10, 455–463. PubMed PMC
Ingale S, Wolfert MA, Gaekwad J, Buskas T & Boons G‐J (2007) Robust immune responses elicited by a fully synthetic three‐component vaccine. Nat Chem Biol 3, 663–667. PubMed PMC
Abdel‐Aal A‐BM, Lakshminarayanan V, Thompson P, Supekar N, Bradley JM, Wolfert MA, Cohen PA, Gendler SJ & Boons G‐J (2014) Immune and anticancer responses elicited by fully synthetic aberrantly glycosylated MUC1 tripartite vaccines modified by a TLR2 or TLR9 agonist. ChemBioChem 15, 1508–1513. PubMed PMC
Datta SK, Cho HJ, Takabayashi K, Horner AA & Raz E (2004) Antigen‐immunostimulatory oligonucleotide conjugates: mechanisms and applications. Immunol Rev 199, 217–226. PubMed
Kramer K, Shields NJ, Poppe V, Young SL & Walker GF (2017) Intracellular cleavable CpG oligodeoxynucleotide‐antigen conjugate enhances anti‐tumor immunity. Mol Ther 25, 62–70. PubMed PMC
Wang Q, Zhou Z, Tang S & Guo Z (2012) Carbohydrate‐monophosphoryl lipid A conjugates are fully synthetic self‐adjuvanting cancer vaccines eliciting robust immune responses in the mouse. ACS Chem Biol 7, 235–240. PubMed PMC
Zhou Z, Mondal M, Liao G & Guo Z (2014) Synthesis and evaluation of monophosphoryl lipid A derivatives as fully synthetic self‐adjuvanting glycoconjugate cancer vaccine carriers. Org Biomol Chem 12, 3238–3245. PubMed PMC
Zhou Z, Liao G, Mandal SS, Suryawanshi S & Guo Z (2015) A fully synthetic self‐adjuvanting globo H‐based vaccine elicited strong T cell‐mediated antitumor immunity. Chem Sci 6, 7112–7121. PubMed PMC
Zhou Z, Mandal SS, Liao G, Guo J & Guo Z (2017) Synthesis and evaluation of GM2‐monophosphoryl lipid A conjugate as a fully synthetic self‐adjuvant cancer vaccine. Sci Rep 7, 11403. PubMed PMC
Traini G, Ruiz‐de‐Angulo A, Blanco‐Canosa JB, Zamacola Bascarán K, Molinaro A, Silipo A, Escors D & Mareque‐Rivas JC (2019) Cancer immunotherapy of TLR4 agonist‐antigen constructs enhanced with pathogen‐mimicking magnetite nanoparticles and checkpoint blockade of PD‐L1. Small 15, 1803993. PubMed
Broecker F, Götze S, Hudon J, Rathwell DCK, Pereira CL, Stallforth P, Anish C & Seeberger PH (2018) Synthesis, liposomal formulation, and immunological evaluation of a minimalistic carbohydrate‐α‐GalCer vaccine candidate. J Med Chem 61, 4918–4927. PubMed
Liu Y, Wang Y, Yu F, Zhang Z, Yang Z, Zhang W, Wang PG & Zhao W (2017) Potentiating the immune response of MUC1‐based antitumor vaccines using a peptide‐based nanovector as a promising vaccine adjuvant. Chem Commun 53, 9486–9489. PubMed
Cai H, Degliangeli F, Palitzsch B, Gerlitzki B, Kunz H, Schmitt E, Fiammengo R & Westerlind U (2016) Glycopeptide‐functionalized gold nanoparticles for antibody induction against the tumor associated mucin‐1 glycoprotein. Bioorg Med Chem 24, 1132–1135. PubMed
Brinãs RP, Sundgren A, Sahoo P, Morey S, Rittenhouse‐Olson K, Wilding GE, Deng W & Barchi JJ (2012) Design and synthesis of multifunctional gold nanoparticles bearing tumor‐associated glycopeptide antigens as potential cancer vaccines. Bioconjug Chem 23, 1513–1523. PubMed PMC
Manuelli M, Fallarini S, Lombardi G, Sangregorio C, Nativi C & Richichi B (2014) Iron oxide superparamagnetic nanoparticles conjugated with a conformationally blocked α‐Tn antigen mimetic for macrophage activation. Nanoscale 6, 7643–7655. PubMed
Gracia R, Marradi M, Salerno G, Pérez‐Nicado R, Vicente AP‐S, Dupin D, Rodriguez J, Loinaz I, Chiodo F & Nativi C (2018) Biocompatible single‐chain polymer nanoparticles loaded with an antigen mimetic as potential anticancer vaccine. ACS Macro Lett 7, 196–200. PubMed
Agrawal B, Krantz MJ, Reddish MA & Longenecker BM (1998) Cancer‐associated MUC1 mucin inhibits human T‐Cell proliferation, which is reversible by IL‐2. Nat Med 4, 43–49. PubMed
Cornelissen LAM & Van Vliet SJ (2016) A bitter sweet symphony: immune responses to altered O‐glycan epitopes in cancer. Biomolecules 6, 26. PubMed PMC
Chauhan SC, Kumar D & Jaggi M (2009) Mucins in ovarian cancer diagnosis and therapy. J Ovarian Res 2, 21. PubMed PMC
van Vliet SJ, van Liempt E, Geijtenbeek TBH & van Kooyk Y (2006) Differential regulation of C‐type lectin expression on tolerogenic dendritic cell subsets. Immunobiology 211, 577–585. PubMed
van Vliet SJ, Bay S, Vuist IM, Kalay H, García‐Vallejo JJ, Leclerc C & van Kooyk Y (2013) MGL signaling augments TLR2‐mediated responses for enhanced IL‐10 and TNF‐α secretion. J Leukoc Biol 94, 315–323. PubMed
Li D, Romain G, Flamar A‐L, Duluc D, Dullaers M, Li X‐H, Zurawski S, Bosquet N, Palucka AK, Le Grand R et al. (2012) Targeting self‐ and foreign antigens to dendritic cells via DC‐ASGPR generates IL‐10‐producing suppressive CD4+ T cells. J Exp Med 209, 109–121. PubMed PMC
Zaal A, Li RJE, Lübbers J, Bruijns SCM, Kalay H, van Kooyk Y & van Vliet SJ (2020) Activation of the C‐type lectin MGL by terminal GalNAc ligands reduces the glycolytic activity of human dendritic cells. Front Immunol 11, 305. PubMed PMC
Forni D, Cagliani R, Clerici M & Sironi M (2017) Molecular evolution of human coronavirus genomes. Trends Microbiol 25, 35–48. PubMed PMC
Watanabe Y, Allen JD, Wrapp D, McLellan JS & Crispin M (2020) Site‐specific glycan analysis of the SARS‐CoV‐2 spike. Science (80‐) 369, 330–333. PubMed PMC
Shajahan A, Supekar NT, Gleinich AS & Azadi P (2020) Deducing the N‐ and O‐glycosylation profile of the spike protein of novel coronavirus SARS‐CoV‐2. Glycobiology 30, 981–988. PubMed PMC
Grant OC, Montgomery D, Ito K & Woods RJ (2020) Analysis of the SARS‐CoV‐2 spike protein glycan shield reveals implications for immune recognition. Sci Rep 10, 1–11. PubMed PMC
Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison AM, Fogarty CA, Barros EP, Taylor BC, McLellan JS et al. (2020) Beyond shielding: the roles of glycans in the SARS‐CoV‐2 spike protein. ACS Cent Sci 6, 1722–1734. PubMed PMC
Gao C, Zeng J, Jia N, Stavenhagen K, Matsumoto Y, Zhang H, Li J, Hume AJ, Mühlberger E, van Die I et al. (2020) SARS‐CoV‐2 spike protein interacts with multiple innate immune receptors. bioRxiv [PREPRINT].
Chiodo F, Bruijns S, Rodriguez E, Li RJE, Molinaro A, Silipo A, Di Lorenzo F, Garcia‐Rivera D, Valdes‐Balbin Y, Verez‐Bencomo V et al. (2020) Novel ACE2‐independent carbohydrate‐binding of SARS‐CoV‐2 spike protein to host lectins and lung microbiota. bioRxiv [PREPRINT].
Hao W, Ma B, Li Z, Wang X, Gao X, Li Y, Qin B, Shang S, Cui S & Tan Z (2020) Binding of the SARS‐CoV‐2 spike protein to glycans. bioRxiv [PREPRINT]. PubMed PMC
Liu L, Chopra P, Li X, Wolfert MA, Tompkins SM & Boons G‐J (2020) SARS‐CoV‐2 spike protein binds heparan sulfate in a length‐ and sequence‐dependent manner. bioRxiv Prepr. Serv. Biol. [PREPRINT].
Mycroft‐West C, Su D, Elli S, Guimond S, Miller G, Turnbull J, Yates E, Guerrini M, Fernig D, Lima M et al. (2020) The 2019 coronavirus (SARS‐CoV‐2) surface protein (Spike) S1 receptor binding domain undergoes conformational change upon heparin binding. bioRxiv [PREPRINT].
Xu W, Wang M, Yu D & Zhang X (2020) Variations in SARS‐CoV‐2 spike protein cell epitopes and glycosylation profiles during global transmission course of COVID‐19. Front Immunol 11, 565278. PubMed PMC
Xu Q, Klees J, Teyral J, Capen R, Huang M, Sturgess AW, Hennessey JP, Washabaugh M, Sitrin R & Abeygunawardana C (2005) Quantitative nuclear magnetic resonance analysis and characterization of the derivatized Haemophilus influenzae type b polysaccharide intermediate for PedvaxHIB. Anal Biochem 337, 235–245. PubMed
Jennings HJ & Pon RA (2009) Microbial Glycobiology: Structures, Relevance and Applications (Moran A, Holst O, Brennan P & von Itzstein M, eds) 1st edn. Elsevier, Amsterdam, the Netherlands.
Pon RA & Jennings HJ (2009) Carbohydrate‐based Vaccines and Immunotherapeutics. Wiley, New York, NY.
Paradiso PR (2011) Advances in pneumococcal disease prevention: 13‐valent pneumococcal conjugate vaccine for infants and children. Clin Infect Dis 52, 1241–1247. PubMed
Belin BJ, Busset N, Giraud E, Molinaro A, Silipo A & Newman DK (2018) Hopanoid lipids: from membranes to plant‐bacteria interactions. Nat Rev Microbiol 16, 304–315. PubMed PMC
Fernández‐Tejada A, Haynes BF & Danishefsky SJ (2015) Designing synthetic vaccines for HIV. Expert Rev Vaccines 14, 815–831. PubMed PMC
Euler Z & Schuitemaker H (2012) Cross‐reactive broadly neutralizing antibodies: timing is everything. Front Immunol 3, 215. PubMed PMC
White TA, Bartesaghi A, Borgnia MJ, Meyerson JR, de la Cruz MJV, Bess JW, Nandwani R, Hoxie JA, Lifson JD, Milne JLS et al. (2010) Molecular architectures of trimeric SIV and HIV‐1 envelope glycoproteins on intact viruses: strain‐dependent variation in quaternary structure. PLoS Pathog 6, e1001249. PubMed PMC