Importance of Germline and Somatic Alterations in Human MRE11, RAD50, and NBN Genes Coding for MRN Complex

. 2023 Mar 15 ; 24 (6) : . [epub] 20230315

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36982687

Grantová podpora
NU22-03-00276 Ministry of Health
DRO-VFN-64165 Ministry of Health
COOPERATIO Charles University
SVV260516 Charles University
EXCELES no. LX22NPO05102 Ministry of Education Youth and Sports

The MRE11, RAD50, and NBN genes encode for the nuclear MRN protein complex, which senses the DNA double strand breaks and initiates the DNA repair. The MRN complex also participates in the activation of ATM kinase, which coordinates DNA repair with the p53-dependent cell cycle checkpoint arrest. Carriers of homozygous germline pathogenic variants in the MRN complex genes or compound heterozygotes develop phenotypically distinct rare autosomal recessive syndromes characterized by chromosomal instability and neurological symptoms. Heterozygous germline alterations in the MRN complex genes have been associated with a poorly-specified predisposition to various cancer types. Somatic alterations in the MRN complex genes may represent valuable predictive and prognostic biomarkers in cancer patients. MRN complex genes have been targeted in several next-generation sequencing panels for cancer and neurological disorders, but interpretation of the identified alterations is challenging due to the complexity of MRN complex function in the DNA damage response. In this review, we outline the structural characteristics of the MRE11, RAD50 and NBN proteins, the assembly and functions of the MRN complex from the perspective of clinical interpretation of germline and somatic alterations in the MRE11, RAD50 and NBN genes.

Zobrazit více v PubMed

Qiu S., Huang J. MRN complex is an essential effector of DNA damage repair. J. Zhejiang Univ. B. 2021;22:31–37. doi: 10.1631/jzus.B2000289. PubMed DOI PMC

Benada J., Macurek L. Targeting the Checkpoint to Kill Cancer Cells. Biomolecules. 2015;5:1912–1937. doi: 10.3390/biom5031912. PubMed DOI PMC

Libri A., Marton T., Deriano L. The (Lack of) DNA Double-Strand Break Repair Pathway Choice during V(D)J Recombination. Front. Genet. 2022;12:1–10. doi: 10.3389/fgene.2021.823943. PubMed DOI PMC

Lingg L., Rottenberg S., Francica P. Meiotic Genes and DNA Double Strand Break Repair in Cancer. Front. Genet. 2022;13:831620. doi: 10.3389/fgene.2022.831620. PubMed DOI PMC

van den Bosch M., Bree R.T., Lowndes N.F. The MRN complex: Coordinating and mediating the response to broken chromosomes. EMBO Rep. 2003;4:844–849. doi: 10.1038/sj.embor.embor925. PubMed DOI PMC

Menon V., Povirk L.F. End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair. DNA Repair. 2016;43:57–68. doi: 10.1016/j.dnarep.2016.05.011. PubMed DOI

Lamarche B.J., Orazio N.I., Weitzman M.D. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 2010;584:3682–3695. doi: 10.1016/j.febslet.2010.07.029. PubMed DOI PMC

Paull T.T. 20 Years of Mre11 Biology: No End in Sight. Mol. Cell. 2018;71:419–427. doi: 10.1016/j.molcel.2018.06.033. PubMed DOI

Syed A., A Tainer J. The MRE11–RAD50–NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu. Rev. Biochem. 2018;87:263–294. doi: 10.1146/annurev-biochem-062917-012415. PubMed DOI PMC

Williams R.S., Williams J.S., Tainer J.A. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem. Cell Biol. 2007;85:509–520. doi: 10.1139/O07-069. PubMed DOI

Rupnik A., Grenon M., Lowndes N. The MRN complex. Curr. Biol. 2008;18:R455–R457. doi: 10.1016/j.cub.2008.03.040. PubMed DOI

Lee J., Dunphy W.G. The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol. Biol. Cell. 2013;24:1343–1353. doi: 10.1091/mbc.e13-01-0025. PubMed DOI PMC

Bian L., Meng Y., Zhang M., Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: Implications for cancer treatment. Mol. Cancer. 2019;18:169. doi: 10.1186/s12943-019-1100-5. PubMed DOI PMC

Rotheneder M., Stakyte K., van de Logt E., Bartho J.D., Lammens K., Fan Y., Alt A., Kessler B., Jung C., Roos W.P., et al. Cryo-EM structure of the Mre11-Rad50-Nbs1 complex reveals the molecular mechanism of scaffolding functions. Mol. Cell. 2023;83:167–185.e9. doi: 10.1016/j.molcel.2022.12.003. PubMed DOI

Schiller C.B., Lammens K., Guerini I., Coordes B., Feldmann H., Schlauderer F., Möckel C., Schele A., Strässer K., Jackson S.P., et al. Structure of Mre11–Nbs1 complex yields insights into ataxia-telangiectasia–like disease mutations and DNA damage signaling. Nat. Struct. Mol. Biol. 2012;19:693–700. doi: 10.1038/nsmb.2323. PubMed DOI PMC

Schiller C.B., Seifert F.U., Linke-Winnebeck C., Hopfner K.-P. Structural Studies of DNA End Detection and Resection in Homologous Recombination. Cold Spring Harb. Perspect. Biol. 2014;6:a017962. doi: 10.1101/cshperspect.a017962. PubMed DOI PMC

Williams R.S., Dodson G.E., Limbo O., Yamada Y., Williams J.S., Guenther G., Classen S., Glover J.M., Iwasaki H., Russell P., et al. Nbs1 Flexibly Tethers Ctp1 and Mre11-Rad50 to Coordinate DNA Double-Strand Break Processing and Repair. Cell. 2009;139:87–99. doi: 10.1016/j.cell.2009.07.033. PubMed DOI PMC

Lim H.S., Kim J.S., Park Y.B., Gwon G.S., Cho Y. Crystal structure of the Mre11-Rad50-ATPγS complex: Understanding the interplay between Mre11 and Rad50. Genes Dev. 2011;25:1091–1104. doi: 10.1101/gad.2037811. PubMed DOI PMC

Lee K.C., Padget K., Curtis H., Cowell I., Moiani D., Sondka Z., Morris N., Jackson G.H., Cockell S., Tainer J., et al. MRE11 facilitates the removal of human topoisomerase II complexes from genomic DNA. Biol. Open. 2012;1:863–873. doi: 10.1242/bio.20121834. PubMed DOI PMC

Lafrance-Vanasse J., Williams G.J., Tainer J.A. Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. Prog. Biophys. Mol. Biol. 2015;117:182–193. doi: 10.1016/j.pbiomolbio.2014.12.004. PubMed DOI PMC

Hopfner K.-P., Karcher A., Craig L., Woo T.T., Carney J.P., Tainer J.A. Structural Biochemistry and Interaction Architecture of the DNA Double-Strand Break Repair Mre11 Nuclease and Rad50-ATPase. Cell. 2001;105:473–485. doi: 10.1016/S0092-8674(01)00335-X. PubMed DOI

Sacho E.J., Maizels N. DNA repair factor MRE11/RAD50 cleaves 3′-phosphotyrosyl bonds and resects DNA to repair damage caused by topoisomerase 1 poisons. J. Biol. Chem. 2011;286:44945–44951. doi: 10.1074/jbc.M111.299347. PubMed DOI PMC

Park Y.B., Chae J., Kim Y.C., Cho Y. Crystal Structure of Human Mre11: Understanding Tumorigenic Mutations. Structure. 2011;19:1591–1602. doi: 10.1016/j.str.2011.09.010. PubMed DOI

Williams R.S., Moncalian G., Williams J.S., Yamada Y., Limbo O., Shin D.S., Groocock L.M., Cahill D., Hitomi C., Guenther G., et al. Mre11 Dimers Coordinate DNA End Bridging and Nuclease Processing in Double-Strand-Break Repair. Cell. 2008;135:97–109. doi: 10.1016/j.cell.2008.08.017. PubMed DOI PMC

Lu R., Zhang H., Jiang Y.-N., Wang Z.-Q., Sun L., Zhou Z.-W. Post-Translational Modification of MRE11: Its Implication in DDR and Diseases. Genes. 2021;12:1158. doi: 10.3390/genes12081158. PubMed DOI PMC

Déry U., Coulombe Y., Rodrigue A., Stasiak A., Richard S., Masson J.-Y. A Glycine-Arginine Domain in Control of the Human MRE11 DNA Repair Protein. Mol. Cell. Biol. 2008;28:3058–3069. doi: 10.1128/MCB.02025-07. PubMed DOI PMC

Gobbini E., Cassani C., Villa M., Bonetti D., Longhese M.P. Functions and regulation of the MRX complex at DNA double-strand breaks. Microb. Cell. 2016;3:329–337. doi: 10.15698/mic2016.08.517. PubMed DOI PMC

Zabolotnaya E., Mela I., Henderson R.M., Robinson N.P. Turning the Mre11/Rad50 DNA repair complex on its head: Lessons from SMC protein hinges, dynamic coiled-coil movements and DNA loop-extrusion? Biochem. Soc. Trans. 2020;48:2359–2376. doi: 10.1042/BST20170168. PubMed DOI PMC

Rojowska A., Lammens K., Seifert F.U., Direnberger C., Feldmann H., Hopfner K. Structure of the Rad50 DNA double-strand break repair protein in complex with DNA. EMBO J. 2014;33:2847–2859. doi: 10.15252/embj.201488889. PubMed DOI PMC

Moncalian G., Lengsfeld B., Bhaskara V., Hopfner K.-P., Karcher A., Alden E., Tainer J.A., Paull T.T. The Rad50 Signature Motif: Essential to ATP Binding and Biological Function. J. Mol. Biol. 2004;335:937–951. doi: 10.1016/j.jmb.2003.11.026. PubMed DOI

Hopfner K.-P., Craig L., Moncalian G., Zinkel R.A., Usui T., Owen B.A.L., Karcher A., Henderson B., Bodmer J.-L., McMurray C.T., et al. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature. 2002;418:562–566. doi: 10.1038/nature00922. PubMed DOI

Remali J., Aizat W.M., Ng C.L., Lim Y.C., Mohamed-Hussein Z.-A., Fazry S. In silico analysis on the functional and structural impact of Rad50 mutations involved in DNA strand break repair. PeerJ. 2020;8:e9197. doi: 10.7717/peerj.9197. PubMed DOI PMC

Moreno-Herrero F., de Jager M., Dekker N.H., Kanaar R., Wyman C., Dekker C. Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature. 2005;437:440–443. doi: 10.1038/nature03927. PubMed DOI

Park Y.B., Hohl M., Padjasek M., Jeong E., Jin K.S., Krezel A., Petrini M.H.J.H.J., Cho Y.B.P.E.J.Y. Eukaryotic Rad50 functions as a rod-shaped dimer. Nat. Struct. Mol. Biol. 2017;24:248–257. doi: 10.1038/nsmb.3369. PubMed DOI PMC

Seifert F.U., Lammens K., Stoehr G., Kessler B., Hopfner K. Structural mechanism of ATP-dependent DNA binding and DNA end bridging by eukaryotic Rad50. EMBO J. 2016;35:759–772. doi: 10.15252/embj.201592934. PubMed DOI PMC

Käshammer L., Saathoff J.-H., Lammens K., Gut F., Bartho J., Alt A., Kessler B., Hopfner K.-P. Mechanism of DNA End Sensing and Processing by the Mre11-Rad50 Complex. Mol. Cell. 2019;76:382–394.e6. doi: 10.1016/j.molcel.2019.07.035. PubMed DOI

Cejka P., Symington L.S. DNA End Resection: Mechanism and Control. Annu. Rev. Genet. 2021;55:285–307. doi: 10.1146/annurev-genet-071719-020312. PubMed DOI

Varon R., Vissinga C., Platzer M., Cerosaletti K.M., Chrzanowska K.H., Saar K., Beckmann G., Seemanová E., Cooper P.R., Nowak N.J., et al. Nibrin, a Novel DNA Double-Strand Break Repair Protein, Is Mutated in Nijmegen Breakage Syndrome. Cell. 1998;93:467–476. doi: 10.1016/S0092-8674(00)81174-5. PubMed DOI

Cilli D., Mirasole C., Pennisi R., Pallotta V., D′Alessandro A., Antoccia A., Zolla L., Ascenzi P., di Masi A. Identification of the Interactors of Human Nibrin (NBN) and of Its 26 kDa and 70 kDa Fragments Arising from the NBN 657del5 Founder Mutation. PLoS ONE. 2014;9:e114651. doi: 10.1371/journal.pone.0114651. PubMed DOI PMC

Chapman J.R., Jackson S.P. Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep. 2008;9:795–801. doi: 10.1038/embor.2008.103. PubMed DOI PMC

Stewart G.S., Wang B., Bignell C.R., Taylor A.M.R., Elledge S.J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 2003;421:961–966. doi: 10.1038/nature01446. PubMed DOI

Iijima K., Ohara M., Seki R., Tauchi H. Dancing on damaged chromatin: Functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. J. Radiat. Res. 2008;49:451–464. doi: 10.1269/jrr.08065. PubMed DOI

von Morgen P., Burdova K., Flower T.G., O′Reilly N.J., Boulton S.J., Smerdon S.J., Macurek L., Hořejší Z. MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene. 2017;36:4943–4950. doi: 10.1038/onc.2017.99. PubMed DOI PMC

Carney J.P., Maser R.S., Olivares H., Davis E.M., Le Beau M., Yates J.R., 3rd, Hays L., Morgan W.F., Petrini J.H. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998;93:477–486. doi: 10.1016/S0092-8674(00)81175-7. PubMed DOI

Kim J.H., Grosbart M., Anand R., Wyman C., Cejka P., Petrini J.H. The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression. Cell Rep. 2017;18:496–507. doi: 10.1016/j.celrep.2016.12.035. PubMed DOI PMC

Anand R., Ranjha L., Cannavo E., Cejka P. Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection. Mol. Cell. 2016;64:940–950. doi: 10.1016/j.molcel.2016.10.017. PubMed DOI

Zhang T., Zhou Z., Yang H., Wang W. MRE11-RAD50-NBS1-CtIP: One key nuclease ensemble functions in the maintenance of genome stability. Genome Instab. Dis. 2022;3:123–135. doi: 10.1007/s42764-022-00065-2. DOI

Wojtaszek J.L., Williams R.S. The ends in sight: Mre11-Rad50-Nbs1 complex structures come into focus. Mol. Cell. 2023;83:160–162. doi: 10.1016/j.molcel.2022.12.016. PubMed DOI

Sevcik J., Falk M., Kleiblova P., Lhota F., Stefancikova L., Janatova M., Weiterova L., Lukasova E., Kozubek S., Pohlreich P., et al. The BRCA1 alternative splicing variant Δ14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells. Cell. Signal. 2012;24:1023–1030. doi: 10.1016/j.cellsig.2011.12.023. PubMed DOI

Prokopcova J., Kleibl Z., Banwell C.M., Pohlreich P. The role of ATM in breast cancer development. Breast Cancer Res. Treat. 2006;104:121–128. doi: 10.1007/s10549-006-9406-6. PubMed DOI

Ueno S., Sudo T., Hirasawa A. ATM: Functions of ATM Kinase and Its Relevance to Hereditary Tumors. Int. J. Mol. Sci. 2022;23:523. doi: 10.3390/ijms23010523. PubMed DOI PMC

Stewart G.S., Maser R.S., Stankovic T., Bressan D.A., Kaplan M.I., Jaspers N.G., Raams A., Byrd P.J., Petrini J.H., Taylor A.R. The DNA Double-Strand Break Repair Gene hMRE11 Is Mutated in Individuals with an Ataxia-Telangiectasia-like Disorder. Cell. 1999;99:577–587. doi: 10.1016/S0092-8674(00)81547-0. PubMed DOI

Myler L.R., Gallardo I.F., Soniat M.M., Deshpande R.A., Gonzalez X.B., Kim Y., Paull T.T., Finkelstein I.J. Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair. Mol. Cell. 2017;67:891–898.e4. doi: 10.1016/j.molcel.2017.08.002. PubMed DOI PMC

Deshpande R.A., Myler L.R., Soniat M.M., Makharashvili N., Lee L., Lees-Miller S.P., Finkelstein I.J., Paull T.T. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci. Adv. 2020;6:eaay0922. doi: 10.1126/sciadv.aay0922. PubMed DOI PMC

Hoa N.N., Shimizu T., Zhou Z.W., Wang Z.-Q., Deshpande R.A., Paull T.T., Akter S., Tsuda M., Furuta R., Tsutsui K., et al. Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes. Mol. Cell. 2016;64:580–592. doi: 10.1016/j.molcel.2016.10.011. PubMed DOI

Buis J., Stoneham T., Spehalski E., Ferguson D.O. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat. Struct. Mol. Biol. 2012;19:246–252. doi: 10.1038/nsmb.2212. PubMed DOI PMC

Paull T.T., Gellert M. The 3′ to 5′ Exonuclease Activity of Mre11 Facilitates Repair of DNA Double-Strand Breaks. Mol. Cell. 1998;1:969–979. doi: 10.1016/S1097-2765(00)80097-0. PubMed DOI

Oh J.-M., Myung K. Crosstalk between different DNA repair pathways for DNA double strand break repairs. Mutat. Res. Toxicol. Environ. Mutagen. 2021;873:503438. doi: 10.1016/j.mrgentox.2021.503438. PubMed DOI

Elkholi I.E., Foulkes W.D., Rivera B. MRN Complex and Cancer Risk: Old Bottles, New Wine. Clin. Cancer Res. 2021;27:5465–5471. doi: 10.1158/1078-0432.CCR-21-1509. PubMed DOI

Roy S., Tomaszowski K.-H., Luzwick J.W., Park S., Li J., Murphy M., Schlacher K. p53 orchestrates DNA replication restart homeostasis by suppressing mutagenic RAD52 and POLθ pathways. Elife. 2018;7:e31723. doi: 10.7554/eLife.31723. PubMed DOI PMC

Schlacher K., Christ N., Siaud N., Egashira A., Wu H., Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145:529–542. doi: 10.1016/j.cell.2011.03.041. PubMed DOI PMC

Zhao F., Kim W., Kloeber J.A., Lou Z. DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp. Mol. Med. 2020;52:1705–1714. doi: 10.1038/s12276-020-00519-1. PubMed DOI PMC

Borsos B.N., Majoros H., Pankotai T. Ubiquitylation-Mediated Fine-Tuning of DNA Double-Strand Break Repair. Cancers. 2020;12:1617. doi: 10.3390/cancers12061617. PubMed DOI PMC

Reginato G., Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair. 2020;91–92:102869. doi: 10.1016/j.dnarep.2020.102869. PubMed DOI

Taylor A.M.R., Rothblum-Oviatt C., Ellis N.A., Hickson I.D., Meyer S., Crawford T.O., Smogorzewska A., Pietrucha B., Weemaes C., Stewart G.S. Chromosome instability syndromes. Nat. Rev. Dis. Prim. 2019;5:64. doi: 10.1038/s41572-019-0113-0. PubMed DOI PMC

Maser R.S., Zinkel R., Petrini J.H. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat. Genet. 2001;27:417–421. doi: 10.1038/86920. PubMed DOI

Varon R., Dutrannoy V., Weikert G., Tanzarella C., Antoccia A., Stöckl L., Spadoni E., Krüger L.-A., di Masi A., Sperling K., et al. Mild Nijmegen breakage syndrome phenotype due to alternative splicing. Hum. Mol. Genet. 2006;15:679–689. doi: 10.1093/hmg/ddi482. PubMed DOI

Chrzanowska K.H., Gregorek H., Dembowska-Bagińska B., Kalina M.A., Digweed M. Nijmegen breakage syndrome (NBS) Orphanet J. Rare Dis. 2012;7:13. doi: 10.1186/1750-1172-7-13. PubMed DOI PMC

Seemanova E., Varon R., Vejvalka J., Jarolim P., Seeman P., Chrzanowska K.H., Digweed M., Resnick I., Kremensky I., Saar K., et al. The Slavic NBN Founder Mutation: A Role for Reproductive Fitness? PLoS ONE. 2016;11:e0167984. doi: 10.1371/journal.pone.0167984. PubMed DOI PMC

Salewsky B., Hildebrand G., Rothe S., Parplys A.C., Radszewski J., Kieslich M., Wessendorf P., Krenzlin H., Borgmann K., Nussenzweig A., et al. Directed Alternative Splicing in Nijmegen Breakage Syndrome: Proof of Principle Concerning Its Therapeutical Application. Mol. Ther. 2016;24:117–124. doi: 10.1038/mt.2015.144. PubMed DOI PMC

Dumon-Jones V., Frappart P.-O., Tong W.-M., Sajithlal G., Hulla W., Schmid G., Herceg Z., Digweed M., Wang Z.-Q. Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis. Cancer Res. 2003;63:7263–7269. PubMed

Desjardins S., Beauparlant J.C., Labrie Y., Ouellette G., INHERIT BRCAs. Francine Durocher Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer. BMC Cancer. 2009;9:181. doi: 10.1186/1471-2407-9-181. PubMed DOI PMC

Varon R., Seemanova E., Chrzanowska K., Hnateyko O., Piekutowska-Abramczuk D., Krajewska-Walasek M., Sykut-Cegielska J., Sperling K., Reis A. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur. J. Hum. Genet. 2000;8:900–902. doi: 10.1038/sj.ejhg.5200554. PubMed DOI

Wolska-Kusnierz B., Pastorczak A., Fendler W., Wakulinska A., Dembowska-Baginska B., Heropolitanska-Pliszka E., Piątosa B., Pietrucha B., Kałwak K., Ussowicz M., et al. Hematopoietic Stem Cell Transplantation Positively Affects the Natural History of Cancer in Nijmegen Breakage Syndrome. Clin. Cancer Res. 2021;27:575–584. doi: 10.1158/1078-0432.CCR-20-2574. PubMed DOI

Dembowska-Baginska B., Perek D., Brozyna A., Wakulinska A., Olczak-Kowalczyk D., Gladkowska-Dura M., Grajkowska W., Chrzanowska K.H. Non-Hodgkin lymphoma (NHL) in children with Nijmegen Breakage syndrome (NBS) Pediatr. Blood Cancer. 2008;52:186–190. doi: 10.1002/pbc.21789. PubMed DOI

Pollard J.M., Gatti R.A. Clinical Radiation Sensitivity with DNA Repair Disorders: An Overview. Int. J. Radiat. Oncol. 2009;74:1323–1331. doi: 10.1016/j.ijrobp.2009.02.057. PubMed DOI PMC

Hasbaoui B.E., Elyajouri A., Abilkassem R., Agadr A. Nijmegen breakage syndrome: Case report and review of literature. Pan. Afr. Med. J. 2020;35:85. doi: 10.11604/pamj.2020.35.85.14746. PubMed DOI PMC

Pasic S., Vujic D., Fiorini M., Notarangelo L.D. T-cell lymphoblastic leukemia/lymphoma in Nijmegen breakage syndrome. Haematologica. 2004;89:ECR27. PubMed

Rahman S., Canny M.D., Buschmann T.A., Latham M.P. A Survey of Reported Disease-Related Mutations in the MRE11-RAD50-NBS1 Complex. Cells. 2020;9:1678. doi: 10.3390/cells9071678. PubMed DOI PMC

Seemanová E., Jarolim P., Seeman P., Varon R., Digweed M., Swift M., Sperling K. Cancer Risk of Heterozygotes With the NBN Founder Mutation. Gynecol. Oncol. 2007;99:1875–1880. doi: 10.1093/jnci/djm251. PubMed DOI

Fiévet A., Bellanger D., Valence S., Mobuchon L., Afenjar A., Giuliano F., d′Enghien C.D., Parfait B., Pedespan J.M., Auger N. Three new cases of ataxia-telangiectasia-like disorder: No impairment of the ATM pathway, but S-phase checkpoint defect. Hum. Mutat. 2019;40:1690–1699. doi: 10.1002/humu.23773. PubMed DOI

Ragamin A., Yigit G., Bousset K., Beleggia F., Verheijen F.W., de Wit M.Y., Strom T.M., Dörk T., Wollnik B., Mancini G.M.S. Human RAD50 deficiency: Confirmation of a distinctive phenotype. Am. J. Med. Genet. Part A. 2020;182:1378–1386. doi: 10.1002/ajmg.a.61570. PubMed DOI PMC

Gueven N., Chen P., Nakamura J., Becherel O., Kijas A., Grattan-Smith P., Lavin M. A subgroup of spinocerebellar ataxias defective in DNA damage responses. Neuroscience. 2007;145:1418–1425. doi: 10.1016/j.neuroscience.2006.12.010. PubMed DOI

Mahale R.R., Reddy N., Mathuranth P., Mailankody P., Padmanabha H., Retnaswami C.S. A rare case of ataxia-telangiectasia-like disorder with MRE11 mutation. J. Pediatr. Neurosci. 2020;15:283–285. doi: 10.4103/jpn.JPN_152_19. PubMed DOI PMC

Alsbeih G. Human Genetic Diseases. IntechOpen; London, UK: 2011. MRE11A Gene Mutations Responsible for the Rare Ataxia Telangiectasia-Like Disorder. PubMed DOI

Shull E.R., Lee Y., Nakane H., Stracker T.H., Zhao J., Russell H.R., Petrini J.H., McKinnon P.J. Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes Dev. 2009;23:171–180. doi: 10.1101/gad.1746609. PubMed DOI PMC

Raslan I.R., Matos P.C.A.P., Ciarlariello V.B., Daghastanli K.H., Rosa A.B.R., Arita J.H., Aranda C.S., Barsottini O.G.P., Pedroso J.L. Beyond Typical Ataxia Telangiectasia: How to Identify the Ataxia Telangiectasia-Like Disorders. Mov. Disord. Clin. Pract. 2020;8:118–125. doi: 10.1002/mdc3.13110. PubMed DOI PMC

Matsumoto Y., Miyamoto T., Sakamoto H., Izumi H., Nakazawa Y., Ogi T., Tahara H., Oku S., Hiramoto A., Shiiki T., et al. Two unrelated patients with MRE11A mutations and Nijmegen breakage syndrome-like severe microcephaly. DNA Repair. 2011;10:314–321. doi: 10.1016/j.dnarep.2010.12.002. PubMed DOI

Uchisaka N., Takahashi N., Sato M., Kikuchi A., Mochizuki S., Imai K., Nonoyama S., Ohara O., Watanabe F., Mizutani S., et al. Two Brothers with Ataxia-Telangiectasia-like Disorder with Lung Adenocarcinoma. J. Pediatr. 2009;155:435–438. doi: 10.1016/j.jpeds.2009.02.037. PubMed DOI

Waltes R., Kalb R., Gatei M., Kijas A.W., Stumm M., Sobeck A., Wieland B., Varon R., Lerenthal Y., Lavin M.F., et al. Human RAD50 Deficiency in a Nijmegen Breakage Syndrome-like Disorder. Am. J. Hum. Genet. 2009;84:605–616. doi: 10.1016/j.ajhg.2009.04.010. PubMed DOI PMC

Hu C., Hart S.N., Gnanaolivu R., Huang H., Lee K.Y., Na J., Gao C., Lilyquist J., Yadav S., Boddicker N.J., et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021;384:440–451. doi: 10.1056/NEJMoa2005936. PubMed DOI PMC

Breast Cancer Association C., Dorling L., Carvalho S., Allen J., González-Neira A., Luccarini C., Wahlström C., Pooley K.A., Parsons M.T., Fortuno C., et al. Breast Cancer Risk Genes-Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021;384:428–439. doi: 10.1056/NEJMoa1913948. PubMed DOI PMC

Shi Z., Lu L., Bs W.K.R., Yang W., Wei J., Wang Q., Engelmann V., Zheng S.L., Cooney K.A., Isaacs W.B., et al. Association of germline rare pathogenic mutations in guideline-recommended genes with prostate cancer progression: A meta-analysis. Prostate. 2021;82:107–119. doi: 10.1002/pros.24252. PubMed DOI

Steffen J., Varon R., Mosor M., Maneva G., Maurer M., Stumm M., Nowakowska D., Rubach M., Kosakowska E., Ruka W., et al. Increased cancer risk of heterozygotes withNBS1 germline mutations in poland. Int. J. Cancer. 2004;111:67–71. doi: 10.1002/ijc.20239. PubMed DOI

Horackova K.F., Zemankova S., Nehasil P., Cerna P., Neroldova M., Otahalova M., Kral B., Hovhannisyan J., Stranecky M., Zima V., et al. Low Frequency of Cancer-Predisposition Gene Mutations in Liver Transplant Candidates with Hepatocellular Carcinoma. Cancers. 2022;15:201. doi: 10.3390/cancers15010201. PubMed DOI PMC

Ciara E., Piekutowska-Abramczuk D., Popowska E., Grajkowska W., Barszcz S., Perek D., Dembowska-Bagińska B., Perek-Polnik M., Kowalewska E., Czajńska A., et al. Heterozygous germ-line mutations in the NBN gene predispose to medulloblastoma in pediatric patients. Acta Neuropathol. 2009;119:325–334. doi: 10.1007/s00401-009-0608-y. PubMed DOI

Soucek P., Gut I., Trneny M., Skovlund E., Alnaes G.G., Kristensen T., Børresen-Dale A.-L., Kristensen V.N. Multiplex single-tube screening for mutations in the Nijmegen Breakage Syndrome (NBS1) gene in Hodgkin′s and non-Hodgkin′s lymphoma patients of Slavic origin. Eur. J. Hum. Genet. 2003;11:416–419. doi: 10.1038/sj.ejhg.5200972. PubMed DOI

Belhadj S., Terradas M., Munoz-Torres P.M., Aiza G., Navarro M., Capellá G., Valle L. Candidate genes for hereditary colorectal cancer: Mutational screening and systematic review. Hum. Mutat. 2020;41:1563–1576. doi: 10.1002/humu.24057. PubMed DOI

Yamaguchi T., Iijima T., Mori T., Takahashi K., Matsumoto H., Miyamoto H., Hishima T., Miyaki M. Accumulation Profile of Frameshift Mutations during Development and Progression of Colorectal Cancer from Patients with Hereditary Nonpolyposis Colorectal Cancer. Dis. Colon Rectum. 2006;49:399–406. doi: 10.1007/s10350-005-0293-4. PubMed DOI

Wang X., Szabo C., Qian C., Amadio P.G., Thibodeau S.N., Cerhan J.R., Petersen G.M., Liu W., Couch F.J. Mutational Analysis of Thirty-two Double-Strand DNA Break Repair Genes in Breast and Pancreatic Cancers. Cancer Res. 2008;68:971–975. doi: 10.1158/0008-5472.CAN-07-6272. PubMed DOI

Heikkinen K., Rapakko K., Karppinen S.-M., Erkko H., Knuutila S., Lundán T., Mannermaa A., Børresen-Dale A.-L., Borg Å., Barkardottir R.B., et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 2005;27:1593–1599. doi: 10.1093/carcin/bgi360. PubMed DOI PMC

Rostami P., Zendehdel K., Shirkoohi R., Ebrahimi E., Ataei M., Imanian H., Najmabadi H., Akbari M.R., Sanati M.H. Gene Panel Testing in Hereditary Breast Cancer. Arch. Iran. Med. 2020;23:155–162. PubMed

Damiola F., Pertesi M., Oliver J., Calvez-Kelm F.L., Voegele C., Young E.L., Robinot N., Forey N., Durand G., Vallée M.P. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: Results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Res. 2014;16:R58. doi: 10.1186/bcr3669. PubMed DOI PMC

Uhrhammer N., Delort L., Bignon Y.-J. Rad50 c.687delT Does Not Contribute Significantly to Familial Breast Cancer in a French Population. Cancer Epidemiol. Biomark. Prev. 2009;18:684–685. doi: 10.1158/1055-9965.EPI-08-0971. PubMed DOI

Trubicka J., Żemojtel T., Hecht J., Falana K., Abramczuk D.P., Płoski R., Perek-Polnik M., Drogosiewicz M., Grajkowska W., Ciara E., et al. The germline variants in DNA repair genes in pediatric medulloblastoma: A challenge for current therapeutic strategies. BMC Cancer. 2017;17:239. doi: 10.1186/s12885-017-3211-y. PubMed DOI PMC

Górski B., Dębniak T., Masojć B., Mierzejewski M., Mędrek K., Cybulski C., Jakubowska A., Kurzawski G., Chosia M., Scott R., et al. Germline 657del5 mutation in the NBS1 gene in breast cancer patients. Int. J. Cancer. 2003;106:379–381. doi: 10.1002/ijc.11231. PubMed DOI

Kanka C., Brozek I., Skalska B., Siemiatkowska A., Limon J. Germline NBS1 mutations in families with aggregation of Breast and/or ovarian cancer from north-east Poland. Anticancer. Res. 2007;27:3015–3018. PubMed

Rożnowski K., Januszkiewicz-Lewandowska D., Mosor M., Pernak M., Litwiniuk M., Nowak J. I171V germline mutation in the NBS1 gene significantly increases risk of breast cancer. Breast Cancer Res. Treat. 2007;110:343–348. doi: 10.1007/s10549-007-9734-1. PubMed DOI

Couch F.J., Shimelis H., Hu C., Hart S.N., Polley E.C., Na J., Hallberg E., Moore R., Thomas A., Lilyquist J., et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol. 2017;3:1190–1196. doi: 10.1001/jamaoncol.2017.0424. PubMed DOI PMC

Hauke J., Horvath J., Groß E., Gehrig A., Honisch E., Hackmann K., Schmidt G., Arnold N., Faust U., Sutter C., et al. Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: Results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med. 2018;7:1349–1358. doi: 10.1002/cam4.1376. PubMed DOI PMC

Rogoża-Janiszewska E., Malińska K., Cybulski C., Jakubowska A., Gronwald J., Huzarski T., Lener M., Górski B., Kluźniak W., Rudnicka H., et al. Prevalence of Recurrent Mutations Predisposing to Breast Cancer in Early-Onset Breast Cancer Patients from Poland. Cancers. 2020;12:2321. doi: 10.3390/cancers12082321. PubMed DOI PMC

Fu F., Zhang D., Hu L., Sundaram S., Ying D., Zhang Y., Fu S., Zhang J., Yao L., Xu Y. Association between 15 known or potential breast cancer susceptibility genes and breast cancer risks in Chinese women. Cancer Biol. Med. 2021;19:253–262. doi: 10.20892/j.issn.2095-3941.2021.0358. PubMed DOI PMC

Kurian A.W., Hughes E., Handorf E.A., Gutin A., Allen B., Hartman A.-R., Hall M.J. Breast and Ovarian Cancer Penetrance Estimates Derived from Germline Multiple-Gene Sequencing Results in Women. JCO Precis. Oncol. 2017;1:1–12. doi: 10.1200/PO.16.00066. PubMed DOI

Mateju M., Kleiblova P., Kleibl Z., Janatova M., Soukupova J., Tichá I., Novotny J., Pohlreich P. Germline mutations 657del5 and 643C>T (R215W) in NBN are not likely to be associated with increased risk of breast cancer in Czech women. Breast Cancer Res. Treat. 2012;133:809–811. doi: 10.1007/s10549-012-2049-x. PubMed DOI

Pardini B., Naccarati A., Polakova V., Smerhovsky Z., Hlavata I., Soucek P., Novotny J., Vodickova L., Tomanova V., Landi S., et al. NBN 657del5 heterozygous mutations and colorectal cancer risk in the Czech Republic. Mutat. Res. Mol. Mech. Mutagen. 2009;666:64–67. doi: 10.1016/j.mrfmmm.2009.04.004. PubMed DOI

Resnick I.B., Kondratenko I., Pashanov E., Maschan A.A., Karachunsky A., Togoev O., Timakov A., Polyakov A., Tverskaya S., Evgrafov O., et al. 657del5 mutation in the gene for Nijmegen breakage syndrome (NBS1) in a cohort of Russian children with lymphoid tissue malignancies and controls. Am. J. Med. Genet. 2003;120A:174–179. doi: 10.1002/ajmg.a.20188. PubMed DOI

Stolarova L., Jelinkova S., Storchova R., Machackova E., Zemankova P., Vocka M., Kodet O., Kral J., Cerna M., Volkova Z., et al. Identification of Germline Mutations in Melanoma Patients with Early Onset, Double Primary Tumors, or Family Cancer History by NGS Analysis of 217 Genes. Biomedicines. 2020;8:404. doi: 10.3390/biomedicines8100404. PubMed DOI PMC

Ramus S.J., Song H., Dicks E., Tyrer J.P., Rosenthal A.N., Intermaggio M.P., Fraser L., Gentry-Maharaj A., Hayward J., Philpott S., et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women with Ovarian Cancer. JNCI J. Natl. Cancer Inst. 2015;107:djv214. doi: 10.1093/jnci/djv214. PubMed DOI PMC

Lhotova K., Stolarova L., Zemankova P., Vocka M., Janatova M., Borecka M., Cerna M., Jelinkova S., Kral J., Volkova Z., et al. Multigene Panel Germline Testing of 1333 Czech Patients with Ovarian Cancer. Cancers. 2020;12:956. doi: 10.3390/cancers12040956. PubMed DOI PMC

Lener M.R., Scott R.J., Kluźniak W., Baszuk P., Cybulski C., Wiechowska-Kozłowska A., Huzarski T., Byrski T., Kładny J., Pietrzak S. Do founder mutations characteristic of some cancer sites also predispose to pancreatic cancer? Int. J. Cancer. 2016;139:601–606. doi: 10.1002/ijc.30116. PubMed DOI

Borecka M., Zemankova P., Lhota F., Soukupova J., Kleiblova P., Vocka M., Soucek P., Ticha I., Kleibl Z., Janatova M. The c.657del5 variant in the NBN gene predisposes to pancreatic cancer. Gene. 2016;587:169–172. doi: 10.1016/j.gene.2016.04.056. PubMed DOI

Cybulski C., Górski B., Debniak T., Gliniewicz B., Mierzejewski M., Masojć B., Jakubowska A., Matyjasik J., Złowocka E., Sikorski A., et al. NBS1 Is a Prostate Cancer Susceptibility Gene. Cancer Res. 2004;64:1215–1219. doi: 10.1158/0008-5472.CAN-03-2502. PubMed DOI

Hebbring S.J., Fredriksson H., White K.A., Maier C., Ewing C., McDonnell S.K., Jacobsen S.J., Cerhan J., Schaid D.J., Ikonen T., et al. Role of the Nijmegen Breakage Syndrome 1 Gene in Familial and Sporadic Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2006;15:935–938. doi: 10.1158/1055-9965.EPI-05-0910. PubMed DOI

Cybulski C., Wokołorczyk D., Kluźniak W., Jakubowska A., Górski B., Gronwald J., Huzarski T., Kashyap A., Byrski T., Dȩbniak T., et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br. J. Cancer. 2013;108:461–468. doi: 10.1038/bjc.2012.486. PubMed DOI PMC

Wokołorczyk D., Kluźniak W., Huzarski T., Gronwald J., Szymiczek A., Rusak B., Stempa K., Gliniewicz K., Kashyap A., Morawska S. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int. J. Cancer. 2020;147:2793–2800. doi: 10.1002/ijc.33272. PubMed DOI

Panou V., Gadiraju M., Wolin A., Weipert C.M., Skarda E., Husain A.N., Patel J.D., Rose B., Zhang S.R., Weatherly M., et al. Frequency of Germline Mutations in Cancer Susceptibility Genes in Malignant Mesothelioma. J. Clin. Oncol. 2018;36:2863–2871. doi: 10.1200/JCO.2018.78.5204. PubMed DOI PMC

Bartkova J., Tommiska J., Oplustilova L., Aaltonen K., Tamminen A., Heikkinen T., Mistrik M., Aittomäki K., Blomqvist C., Heikkilä P., et al. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol. Oncol. 2008;2:296–316. doi: 10.1016/j.molonc.2008.09.007. PubMed DOI PMC

Hsu H.M., Wang H.-C., Chen S.-T., Hsu G.-C., Shen C.-Y., Yu J.-C. Breast cancer risk is associated with the genes encoding the DNA double-strand break repair Mre11/Rad50/Nbs1 complex. Cancer Epidemiol. Biomark. Prev. 2007;16:2024–2032. doi: 10.1158/1055-9965.EPI-07-0116. PubMed DOI

Castera L., Krieger S., Rousselin A., Legros A., Baumann J.-J., Bruet O., Brault B., Fouillet R., Goardon N., Letac O., et al. Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur. J. Hum. Genet. 2014;22:1305–1313. doi: 10.1038/ejhg.2014.16. PubMed DOI PMC

Elkholi I.E., Di Iorio M., Fahiminiya S., Arcand S.L., Han H., Nogué C., Behl S., Hamel N., Giroux S., de Ladurantaye M., et al. Investigating the causal role of MRE11A p.E506* in breast and ovarian cancer. Sci. Rep. 2021;11:2409. doi: 10.1038/s41598-021-81106-w. PubMed DOI PMC

LaDuca H., Polley E.C., Yussuf A., Hoang L., Bs S.G., Hart S.N., Yadav S., Hu C., Na J., Goldgar D.E., et al. A clinical guide to hereditary cancer panel testing: Evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Anesth. Analg. 2019;22:407–415. doi: 10.1038/s41436-019-0633-8. PubMed DOI PMC

McGuigan A., Whitworth J., Andreou A., Hearn T., Ambrose J.C., Arumugam P., Bevers R., Bleda M., Boardman-Pretty F., Boustred C.R., et al. Multilocus Inherited Neoplasia Allele Syndrome (MINAS): An update. Eur. J. Hum. Genet. 2022;30:265–270. doi: 10.1038/s41431-021-01013-6. PubMed DOI PMC

Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., Thornton A., Norquist B.M., Casadei S., Nord A.S., et al. Germline and Somatic Mutations in Homologous Recombination Genes Predict Platinum Response and Survival in Ovarian, Fallopian Tube, and Peritoneal Carcinomas. Clin. Cancer Res. 2014;20:764–775. doi: 10.1158/1078-0432.CCR-13-2287. PubMed DOI PMC

Vyas S., Chang P. New PARP targets for cancer therapy. Nat. Rev. Cancer. 2014;14:502–509. doi: 10.1038/nrc3748. PubMed DOI PMC

Gelmon K.A., Tischkowitz M., Mackay H., Swenerton K., Robidoux A., Tonkin K., Hirte H., Huntsman D., Clemons M., Gilks B., et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12:852–861. doi: 10.1016/S1470-2045(11)70214-5. PubMed DOI

de Bono J.S., Mehra N., Scagliotti G.V., Castro G., Dorff T., Stirling A., Stenzl A., Fleming M.T., Higano C.S., Saad F. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): An open-label, phase 2 trial. Lancet Oncol. 2021;22:1250–1264. doi: 10.1016/S1470-2045(21)00376-4. PubMed DOI

Fumet J.-D., Limagne E., Thibaudin M., Truntzer C., Bertaut A., Rederstorff E., Ghiringhelli F. Precision medicine phase II study evaluating the efficacy of a double immunotherapy by durvalumab and tremelimumab combined with olaparib in patients with solid cancers and carriers of homologous recombination repair genes mutation in response or stable after olaparib treatment. BMC Cancer. 2020;20:748. doi: 10.1186/s12885-020-07253-x. PubMed DOI PMC

McPherson M.T., Holub A.S., Husbands A.Y., Petreaca R.C. Mutation Spectra of the MRN (MRE11, RAD50, NBS1/NBN) Break Sensor in Cancer Cells. Cancers. 2020;12:3794. doi: 10.3390/cancers12123794. PubMed DOI PMC

Al-Ahmadie H., Iyer G., Hohl M., Asthana S., Inagaki A., Schultz N., Hanrahan A.J., Scott S.N., Brannon A.R., McDermott G.C., et al. Synthetic Lethality in ATM-Deficient RAD50-Mutant Tumors Underlies Outlier Response to Cancer Therapy. Cancer Discov. 2014;4:1014–1021. doi: 10.1158/2159-8290.CD-14-0380. PubMed DOI PMC

Boswell Z.K., Canny M.D., Buschmann T.A., Sang J., Latham M.P. Adjacent mutations in the archaeal Rad50 ABC ATPase D-loop disrupt allosteric regulation of ATP hydrolysis through different mechanisms. Nucleic Acids Res. 2019;48:2457–2472. doi: 10.1093/nar/gkz1228. PubMed DOI PMC

Seborova K., Hlavac V., Holy P., Bjørklund S.S., Fleischer T., Rob L., Hruda M., Bouda J., Mrhalova M., Allah M.M.K.A.O., et al. Complex molecular profile of DNA repair genes in epithelial ovarian carcinoma patients with different sensitivity to platinum-based therapy. Front. Oncol. 2022;12:1016958. doi: 10.3389/fonc.2022.1016958. PubMed DOI PMC

Chae Y.K., Anker J.F., Carneiro B.A., Chandra S., Kaplan J., Kalyan A., Santa-Maria C.A., Platanias L.C., Giles F.J. Genomic landscape of DNA repair genes in cancer. Oncotarget. 2016;7:23312–23321. doi: 10.18632/oncotarget.8196. PubMed DOI PMC

Wu Z., Li S., Tang X., Wang Y., Guo W., Cao G., Chen K., Zhang M., Guan M., Yang D. Copy Number Amplification of DNA Damage Repair Pathways Potentiates Therapeutic Resistance in Cancer. Theranostics. 2020;10:3939–3951. doi: 10.7150/thno.39341. PubMed DOI PMC

Berlin A., LaLonde E., Zafarana G., Sykes J., Lam W., Meng A., Milosevic M., Van der Kwast T., Boutros P., Bristow R. PD-0300: NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer. Radiother. Oncol. 2014;111:S116–S117. doi: 10.1016/S0167-8140(15)30405-9. PubMed DOI PMC

Loh P.-R., Genovese G., McCarroll S.A. Monogenic and polygenic inheritance become instruments for clonal selection. Nature. 2020;584:136–141. doi: 10.1038/s41586-020-2430-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...