The Slavic NBN Founder Mutation: A Role for Reproductive Fitness?
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27936167
PubMed Central
PMC5148078
DOI
10.1371/journal.pone.0167984
PII: PONE-D-16-25449
Knihovny.cz E-zdroje
- MeSH
- detekce genetických nosičů MeSH
- dospělí MeSH
- efekt zakladatele * MeSH
- haplotypy MeSH
- jaderné proteiny genetika MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace * MeSH
- oprava DNA MeSH
- poškození DNA MeSH
- proteiny buněčného cyklu genetika MeSH
- rozmnožování genetika MeSH
- syndrom Nijmegen breakage etnologie genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika MeSH
- Názvy látek
- jaderné proteiny MeSH
- NBN protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the 'Slavic people'. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2.
Cologne Center for Genomics University of Cologne Köln Germany
Department of Informatics 2nd Medical School Charles University Prague Czech Republic
Department of Medical Genetics The Children's Memorial Health Institute Warsaw Poland
Division of Pediatric Molecular Genetics Ankara University School of Medicine Ankara Turkey
Institute of Human Genetics Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany
Institute of Human Genetics Martin Luther University Halle Wittenberg Halle Germany
Institute of Medical and Human Genetics Charité Universitätsmedizin Berlin Germany
Institute of Medical Informatics and Statistics Christian Albrechts University Kiel Germany
Leipzig University Medical Center IFB AdiposityDiseases Leipzig Germany
Max Delbrück Center for Molecular Medicine Berlin Buch Germany
Tanz Centre for Research in Neurodegenerative Diseases University of Toronto Toronto Canada
Zobrazit více v PubMed
Digweed M, Sperling K. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst). 2004;3(8–9):1207–17. Epub 2004/07/29. PubMed
Chrzanowska KH, Gregorek H, Dembowska-Baginska B, Kalina MA, Digweed M. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7:13 10.1186/1750-1172-7-13 PubMed DOI PMC
Digweed M, Reis A, Sperling K. Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. Bioessays. 1999;21(8):649–56. Epub 1999/08/10. 10.1002/(SICI)1521-1878(199908)21:8<649::AID-BIES4>3.0.CO;2-O PubMed DOI
Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93(3):467–76. Epub 1998/05/20. PubMed
Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998;93(3):477–86. PubMed
Matsuura S, Tauchi H, Nakamura A, Kondo N, Sakamoto S, Endo S, et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet. 1998;19(2):179–81. 10.1038/549 PubMed DOI
Yuan J, Chen J. MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX. J Biol Chem. 2010;285(2):1097–104. 10.1074/jbc.M109.078436 PubMed DOI PMC
Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 2010;584(17):3682–95. 10.1016/j.febslet.2010.07.029 PubMed DOI PMC
Maser RS, Zinkel R, Petrini JH. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat Genet. 2001;27(4):417–21. 10.1038/86920 PubMed DOI
Rebala K, Mikulich AI, Tsybovsky IS, Sivakova D, Dzupinkova Z, Szczerkowska-Dobosz A, et al. Y-STR variation among Slavs: evidence for the Slavic homeland in the middle Dnieper basin. J Hum Genet. 2007;52(5):406–14. 10.1007/s10038-007-0125-6 PubMed DOI
Mielnik-Sikorska M, Daca P, Malyarchuk B, Derenko M, Skonieczna K, Perkova M, et al. The history of Slavs inferred from complete mitochondrial genome sequences. PLoS One. 2013;8(1):e54360 10.1371/journal.pone.0054360 PubMed DOI PMC
Kushniarevich A, Utevska O, Chuhryaeva M, Agdzhoyan A, Dibirova K, Uktveryte I, et al. Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data. PLoS One. 2015;10(9):e0135820 10.1371/journal.pone.0135820 PubMed DOI PMC
Veeramah KR, Tonjes A, Kovacs P, Gross A, Wegmann D, Geary P, et al. Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity. Eur J Hum Genet. 2011;19(9):995–1001. 10.1038/ejhg.2011.65 PubMed DOI PMC
Rozhanskii I. L. K AA. Haplogroup R1a, its subclades and branches in Europe during the last 9000 years. Advances in Anthropology. 2012;2(3):139–56.
Varon R, Seemanova E, Chrzanowska K, Hnateyko O, Piekutowska-Abramczuk D, Krajewska-Walasek M, et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet. 2000;8(11):900–2. Epub 2000/11/28. 10.1038/sj.ejhg.5200554 PubMed DOI
Maurer MH, Hoffmann K, Sperling K, Varon R. High prevalence of the NBN gene mutation c.657-661del5 in Southeast Germany. J Appl Genet. 2010;51(2):211–4. PubMed
Demuth I, Digweed M. The clinical manifestation of a defective response to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome. Oncogene. 2007;26(56):7792–8. 10.1038/sj.onc.1210876 PubMed DOI
Gao P, Ma N, Li M, Tian QB, Liu DW. Functional variants in NBS1 and cancer risk: evidence from a meta-analysis of 60 publications with 111 individual studies. Mutagenesis. 2013;28(6):683–97. 10.1093/mutage/get048 PubMed DOI
Seemanova E, Jarolim P, Seeman P, Varon R, Digweed M, Swift M, et al. Cancer risk of heterozygotes with the NBN founder mutation. J Natl Cancer Inst. 2007;99(24):1875–80. 10.1093/jnci/djm251 PubMed DOI
Gillespie JH. Population genetics: a concise guide. 2nd ed Baltimore, MD, USA: The Johns Hopkins University Press; 2004.
Seeman P, Gebertova K, Paderova K, Sperling K, Seemanova E. Nijmegen breakage syndrome in 13% of age-matched Czech children with primary microcephaly. Pediatr Neurol. 2004;30(3):195–200. Epub 2004/03/23. 10.1016/j.pediatrneurol.2003.07.003 PubMed DOI
Kong X, Matise TC. MAP-O-MAT: internet-based linkage mapping. Bioinformatics. 2005;21(4):557–9. 10.1093/bioinformatics/bti024 PubMed DOI
Lander ES, Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987;84(8):2363–7. PubMed PMC
Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, et al. A second-generation combined linkage physical map of the human genome. Genome Res. 2007;17(12):1783–6. 10.1101/gr.7156307 PubMed DOI PMC
Matise TC, Gitlin JA. MAP-O-MAT: marker-based linkage mapping on the World Wide Web. Am J Hum Genet. 1999;65(4):A435.
Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, et al. A high-resolution recombination map of the human genome. Nat Genet. 2002;31(3):241–7. Epub 2002/06/08. 10.1038/ng917 PubMed DOI
Broman KW, Murray JC, Sheffield VC, White RL, Weber JL. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet. 1998;63(3):861–9. Epub 1998/08/27. 10.1086/302011 PubMed DOI PMC
Reeve JP, Rannala B. DMLE+: Bayesian linkage disequilibrium gene mapping. Bioinformatics. 2002;18(6):894–5. PubMed
Rannala B, Reeve JP. High-resolution multipoint linkage-disequilibrium mapping in the context of a human genome sequence. Am J Hum Genet. 2001;69(1):159–78. 10.1086/321279 PubMed DOI PMC
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: 2015.
Steffen J, Varon R, Mosor M, Maneva G, Maurer M, Stumm M, et al. Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer. 2004;111(1):67–71. Epub 2004/06/09. 10.1002/ijc.20239 PubMed DOI
Kanka C, Brozek I, Skalska B, Siemiatkowska A, Limon J. Germline NBS1 mutations in families with aggregation of Breast and/or ovarian cancer from north-east Poland. Anticancer Res. 2007;27(4C):3015–8. PubMed
Gorski B, Debniak T, Masojc B, Mierzejewski M, Medrek K, Cybulski C, et al. Germline 657del5 mutation in the NBS1 gene in breast cancer patients. Int J Cancer. 2003;106(3):379–81. 10.1002/ijc.11231 PubMed DOI
Cybulski C, Gorski B, Debniak T, Gliniewicz B, Mierzejewski M, Masojc B, et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res. 2004;64(4):1215–9. PubMed
Ziolkowska I, Mosor M, Nowak J. Regional distribution of heterozygous 657del5 mutation carriers of the NBS1 gene in Wielkopolska province (Poland). J Appl Genet. 2006;47(3):269–72. 10.1007/BF03194635 PubMed DOI
Chrzanowska KH, Piekutowska-Abramczuk D, Popowska E, Gladkowska-Dura M, Maldyk J, Syczewska M, et al. Carrier frequency of mutation 657del5 in the NBS1 gene in a population of Polish pediatric patients with sporadic lymphoid malignancies. Int J Cancer. 2006;118(5):1269–74. 10.1002/ijc.21439 PubMed DOI
Drabek J, Hajduch M, Gojova L, Weigl E, Mihal V. Frequency of 657del(5) mutation of the NBS1 gene in the Czech population by polymerase chain reaction with sequence specific primers. Cancer Genet Cytogenet. 2002;138(2):157–9. PubMed
Pardini B, Naccarati A, Polakova V, Smerhovsky Z, Hlavata I, Soucek P, et al. NBN 657del5 heterozygous mutations and colorectal cancer risk in the Czech Republic. Mutat Res. 2009;666(1–2):64–7. 10.1016/j.mrfmmm.2009.04.004 PubMed DOI
Mateju M, Kleiblova P, Kleibl Z, Janatova M, Soukupova J, Ticha I, et al. Germline mutations 657del5 and 643C>T (R215W) in NBN are not likely to be associated with increased risk of breast cancer in Czech women. Breast Cancer Res Treat. 2012;133(2):809–11. 10.1007/s10549-012-2049-x PubMed DOI
Bogdanova N, Schurmann P, Waltes R, Feshchenko S, Zalutsky IV, Bremer M, et al. NBS1 variant I171V and breast cancer risk. Breast Cancer Res Treat. 2008;112(1):75–9. 10.1007/s10549-007-9820-4 PubMed DOI
Resnick IB, Kondratenko I, Pashanov E, Maschan AA, Karachunsky A, Togoev O, et al. 657del5 mutation in the gene for Nijmegen breakage syndrome (NBS1) in a cohort of Russian children with lymphoid tissue malignancies and controls. Am J Med Genet A. 2003;120A(2):174–9. 10.1002/ajmg.a.20188 PubMed DOI
Buslov KG, Iyevleva AG, Chekmariova EV, Suspitsin EN, Togo AV, Kuligina E, et al. NBS1 657del5 mutation may contribute only to a limited fraction of breast cancer cases in Russia. Int J Cancer. 2005;114(4):585–9. 10.1002/ijc.20765 PubMed DOI
Seemanova E, Pohanka V, Seeman P, Misovicova N, Behunova J, Kvasnicova M, et al. [Nijmegen breakage syndrome in Slovakia]. Cas Lek Cesk. 2004;143(8):538–41; discussion 42. Epub 2004/09/28. PubMed
Carlomagno F, Chang-Claude J, Dunning AM, Ponder BA. Determination of the frequency of the common 657Del5 Nijmegen breakage syndrome mutation in the German population: no association with risk of breast cancer. Genes Chromosomes Cancer. 1999;25(4):393–5. PubMed
He M, Di GH, Cao AY, Hu Z, Jin W, Shen ZZ, et al. RAD50 and NBS1 are not likely to be susceptibility genes in Chinese non-BRCA1/2 hereditary breast cancer. Breast Cancer Res Treat. 2012;133(1):111–6. 10.1007/s10549-011-1700-2 PubMed DOI
Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522(7555):207–11. 10.1038/nature14317 PubMed DOI PMC
Huang LO, Labbe A, Infante-Rivard C. Transmission ratio distortion: review of concept and implications for genetic association studies. Hum Genet. 2013;132(3):245–63. 10.1007/s00439-012-1257-0 PubMed DOI
Rotter JI, Diamond JM. What maintains the frequencies of human genetic diseases? Nature. 1987;329(6137):289–90. 10.1038/329289a0 PubMed DOI
Gemmell NJ, Slate J. Heterozygote advantage for fecundity. PLoS One. 2006;1:e125 10.1371/journal.pone.0000125 PubMed DOI PMC
Smith KR, Hanson HA, Mineau GP, Buys SS. Effects of BRCA1 and BRCA2 mutations on female fertility. Proc Biol Sci. 2012;279(1732):1389–95. 10.1098/rspb.2011.1697 PubMed DOI PMC
Smith KR, Hanson HA, Hollingshaus MS. BRCA1 and BRCA2 mutations and female fertility. Curr Opin Obstet Gynecol. 2013;25(3):207–13. 10.1097/GCO.0b013e32835f1731 PubMed DOI PMC
Kwiatkowski F, Arbre M, Bidet Y, Laquet C, Uhrhammer N, Bignon YJ. BRCA Mutations Increase Fertility in Families at Hereditary Breast/Ovarian Cancer Risk. PLoS One. 2015;10(6):e0127363 10.1371/journal.pone.0127363 PubMed DOI PMC
Voskarides K. Genetic epidemiology of cancer predisposition DNA repair genes is probably related with ancestral surviving under adverse environmental conditions. Genet Test Mol Biomarkers. 2014;18(8):533–7. 10.1089/gtmb.2014.0053 PubMed DOI
Lombard DB, Guarente L. Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res. 2000;60(9):2331–4. PubMed
Borde V. The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res. 2007;15(5):551–63. 10.1007/s10577-007-1147-9 PubMed DOI
Shimada M, Sagae R, Kobayashi J, Habu T, Komatsu K. Inactivation of the Nijmegen breakage syndrome gene leads to excess centrosome duplication via the ATR/BRCA1 pathway. Cancer Res. 2009;69(5):1768–75. 10.1158/0008-5472.CAN-08-3016 PubMed DOI
Difilippantonio S, Celeste A, Kruhlak MJ, Lee Y, Difilippantonio MJ, Feigenbaum L, et al. Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. J Exp Med. 2007;204(5):1003–11. 10.1084/jem.20070319 PubMed DOI PMC
Macklon NS, Geraedts JP, Fauser BC. Conception to ongoing pregnancy: the 'black box' of early pregnancy loss. Hum Reprod Update. 2002;8(4):333–43. PubMed
Santos MA, Kuijk EW, Macklon NS. The impact of ovarian stimulation for IVF on the developing embryo. Reproduction. 2010;139(1):23–34. 10.1530/REP-09-0187 PubMed DOI
Petersen MB, Mikkelsen M. Nondisjunction in trisomy 21: origin and mechanisms. Cytogenet Cell Genet. 2000;91(1–4):199–203. doi: 56844 PubMed
Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91. 10.1038/35066065 PubMed DOI
Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, et al. New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet. 2008;4(3):e1000033 10.1371/journal.pgen.1000033 PubMed DOI PMC
Delhanty JD. Mechanisms of aneuploidy induction in human oogenesis and early embryogenesis. Cytogenet Genome Res. 2005;111(3–4):237–44. 10.1159/000086894 PubMed DOI
Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493–504. 10.1038/nrg3245 PubMed DOI PMC
Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15(5):577–83. 10.1038/nm.1924 PubMed DOI
Gorbsky GJ. The spindle checkpoint and chromosome segregation in meiosis. FEBS Journal. 2014;282:2471–87. PubMed PMC
Cheung VG, Ewens WJ. Heterozygous carriers of Nijmegen Breakage Syndrome have a distinct gene expression phenotype. Genome Res. 2006;16(8):973–9. 10.1101/gr.5320706 PubMed DOI PMC
Cilli D, Mirasole C, Pennisi R, Pallotta V, D'Alessandro A, Antoccia A, et al. Identification of the interactors of human nibrin (NBN) and of its 26 kDa and 70 kDa fragments arising from the NBN 657del5 founder mutation. PLoS One. 2014;9(12):e114651 10.1371/journal.pone.0114651 PubMed DOI PMC
The NBN founder mutation-Evidence for a country specific difference in age at cancer manifestation