MRE11 stability is regulated by CK2-dependent interaction with R2TP complex
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
11581
Cancer Research UK - United Kingdom
MC_U117584228
Medical Research Council - United Kingdom
FC001156
Cancer Research UK - United Kingdom
200462
Wellcome Trust - United Kingdom
FC001048
Cancer Research UK - United Kingdom
FC001156
Wellcome Trust - United Kingdom
104558
Wellcome Trust - United Kingdom
FC001048
Wellcome Trust - United Kingdom
268639
European Research Council - International
FC001156
Arthritis Research UK - United Kingdom
FC001048
Arthritis Research UK - United Kingdom
FC001048
Medical Research Council - United Kingdom
FC001156
Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
PubMed
28436950
PubMed Central
PMC5531254
DOI
10.1038/onc.2017.99
PII: onc201799
Knihovny.cz E-zdroje
- MeSH
- ATM protein metabolismus MeSH
- buněčné jádro metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- enzymy opravy DNA metabolismus MeSH
- fosforylace fyziologie MeSH
- jaderné proteiny metabolismus MeSH
- kaseinkinasa II metabolismus MeSH
- lidé MeSH
- mutace fyziologie MeSH
- myši MeSH
- oprava DNA fyziologie MeSH
- poškození DNA fyziologie MeSH
- proteiny regulující apoptózu metabolismus MeSH
- proteiny teplotního šoku metabolismus MeSH
- ribonukleoproteiny malé jadérkové metabolismus MeSH
- RNA-polymerasa II metabolismus MeSH
- serin metabolismus MeSH
- teleangiektatická ataxie metabolismus MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- vazba proteinů fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ATM protein MeSH
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- jaderné proteiny MeSH
- kaseinkinasa II MeSH
- proteiny regulující apoptózu MeSH
- proteiny teplotního šoku MeSH
- ribonukleoproteiny malé jadérkové MeSH
- RNA-polymerasa II MeSH
- serin MeSH
- TOR serin-threoninkinasy MeSH
The MRN (MRE11-RAD50-NBS1) complex is essential for repair of DNA double-strand breaks and stalled replication forks. Mutations of the MRN complex subunit MRE11 cause the hereditary cancer-susceptibility disease ataxia-telangiectasia-like disorder (ATLD). Here we show that MRE11 directly interacts with PIH1D1, a subunit of heat-shock protein 90 cochaperone R2TP complex, which is required for the assembly of large protein complexes, such as RNA polymerase II, small nucleolar ribonucleoproteins and mammalian target of rapamycin complex 1. The MRE11-PIH1D1 interaction is dependent on casein kinase 2 (CK2) phosphorylation of two acidic sequences within the MRE11 C terminus containing serines 558/561 and 688/689. Conversely, the PIH1D1 phospho-binding domain PIH-N is required for association with MRE11 phosphorylated by CK2. Consistent with these findings, depletion of PIH1D1 resulted in MRE11 destabilization and affected DNA-damage repair processes dependent on MRE11. Additionally, mutations of serines 688/689, which abolish PIH1D1 binding, also resulted in decreased MRE11 stability. As depletion of R2TP frequently leads to instability of its substrates and as truncation mutation of MRE11 lacking serines 688/689 leads to decreased levels of the MRN complex both in ATLD patients and an ATLD mouse model, our results suggest that the MRN complex is a novel R2TP complex substrate and that their interaction is regulated by CK2 phosphorylation.
Department of Cancer Cell Biology Institute of Molecular Genetics of the ASCR Prague Czech Republic
DSB Repair Metabolism Laboratory The Francis Crick Institute London UK
Faculty of Science Charles University Prague Czech Republic
Peptide Chemistry The Francis Crick Institute London UK
Structural Biology of DNA damage Signalling Laboratory The Francis Crick Institute London UK
Zobrazit více v PubMed
Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999; 99: 577–587. PubMed
Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998; 93: 467–476. PubMed
Bartkova J, Tommiska J, Oplustilova L, Aaltonen K, Tamminen A, Heikkinen T et al. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol 2008; 2: 296–316. PubMed PMC
Heikkinen K, Rapakko K, Karppinen SM, Erkko H, Knuutila S, Lundan T et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis 2006; 27: 1593–1599. PubMed PMC
Kleibl Z, Kristensen VN. Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. Breast 2016; 28: 136–144. PubMed
Chubb D, Broderick P, Dobbins SE, Frampton M, Kinnersley B, Penegar S et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat Commun 2016; 7: 11883. PubMed PMC
Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 2010; 584: 3682–3695. PubMed PMC
Williams GJ, Lees-Miller SP, Tainer JA. Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair 2010; 9: 1299–1306. PubMed PMC
Cannavo E, Cejka P. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 2014; 514: 122–125. PubMed
Paull TT, Gellert M. The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1998; 1: 969–979. PubMed
Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)—its clinical presentation and molecular basis. DNA Repair 2004; 3: 1219–1225. PubMed
Regal JA, Festerling TA, Buis JM, Ferguson DO. Disease-associated MRE11 mutants impact ATM/ATR DNA damage signaling by distinct mechanisms. Hum Mol Genet 2013; 22: 5146–5159. PubMed PMC
Dery U, Coulombe Y, Rodrigue A, Stasiak A, Richard S, Masson JY. A glycine-arginine domain in control of the human MRE11 DNA repair protein. Mol Cell Biol 2008; 28: 3058–3069. PubMed PMC
Yu Z, Vogel G, Coulombe Y, Dubeau D, Spehalski E, Hebert J et al. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation. Cell Res 2012; 22: 305–320. PubMed PMC
Chen C, Zhang L, Huang NJ, Huang B, Kornbluth S. Suppression of DNA-damage checkpoint signaling by Rsk-mediated phosphorylation of Mre11. Proc Natl Acad Sci USA 2013; 110: 20605–20610. PubMed PMC
Kijas AW, Lim YC, Bolderson E, Cerosaletti K, Gatei M, Jakob B et al. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through exonuclease 1. Nucleic Acids Res 2015; 43: 8352–8367. PubMed PMC
Buis J, Stoneham T, Spehalski E, Ferguson DO. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat Struct Mol Biol 2012; 19: 246–252. PubMed PMC
Theunissen JW, Kaplan MI, Hunt PA, Williams BR, Ferguson DO, Alt FW et al. Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 2003; 12: 1511–1523. PubMed
Pal M, Morgan M, Phelps SE, Roe SM, Parry-Morris S, Downs JA et al. Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 2014; 22: 805–818. PubMed PMC
Horejsi Z, Stach L, Flower TG, Joshi D, Flynn H, Skehel JM et al. Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 2014; 7: 19–26. PubMed PMC
Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M et al. HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 2010; 39: 912–924. PubMed PMC
Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S et al. CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 2010; 39: 839–850. PubMed
Machado-Pinilla R, Liger D, Leulliot N, Meier UT. Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs. RNA 2012; 18: 1833–1845. PubMed PMC
Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M et al. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 2008; 180: 563–578. PubMed PMC
Rosenbaum J, Baek SH, Dutta A, Houry WA, Huber O, Hupp TR et al. The emergence of the conserved AAA+ ATPases Pontin and Reptin on the signaling landscape. Sci Signal 2013; 6: mr1. PubMed PMC
Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 2005; 120: 715–727. PubMed
Benbahouche Nel H, Iliopoulos I, Torok I, Marhold J, Henri J, Kajava AV et al. Drosophila Spag is the homolog of RNA polymerase II-associated protein 3 (RPAP3) and recruits the heat shock proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries. J Biol Chem 2014; 289: 6236–6247. PubMed PMC
Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013; 35: 463–473. PubMed PMC
Rendtlew Danielsen JM, Larsen DH, Schou KB, Freire R, Falck J, Bartek J et al. HCLK2 is required for activity of the DNA damage response kinase ATR. J Biol Chem 2009; 284: 4140–4147. PubMed
Rao F, Cha J, Xu J, Xu R, Vandiver MS, Tyagi R et al. Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 2014; 54: 119–132. PubMed PMC
Bennardo N, Gunn A, Cheng A, Hasty P, Stark JM. Limiting the persistence of a chromosome break diminishes its mutagenic potential. PLoS Genet 2009; 5: e1000683. PubMed PMC
Gunn A, Stark JM. I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol 2012; 920: 379–391. PubMed
Deshpande RA, Lee JH, Arora S, Paull TT. Nbs1 converts the human Mre11/Rad50 nuclease complex into an endo/exonuclease machine specific for protein-DNA adducts. Mol Cell 2016; 64: 593–606. PubMed
Hoa NN, Shimizu T, Zhou ZW, Wang ZQ, Deshpande RA, Paull TT et al. Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol Cell 2016; 64: 1010. PubMed
Aparicio T, Baer R, Gottesman M, Gautier J. MRN, CtIP and BRCA1 mediate repair of topoisomerase II-DNA adducts. J Cell Biol 2016; 212: 399–408. PubMed PMC
Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 2014; 42: D574–D580. PubMed PMC
Kiianitsa K, Maizels N. A rapid and sensitive assay for DNA–protein covalent complexes in living cells. Nucleic Acids Res 2013; 41: e104. PubMed PMC