Randomized investigation of increased dialyzer membrane hydrophilicity on hemocompatibility and performance
Language English Country England, Great Britain Media electronic
Document type Journal Article, Randomized Controlled Trial, Multicenter Study
PubMed
38987671
PubMed Central
PMC11234537
DOI
10.1186/s12882-024-03644-5
PII: 10.1186/s12882-024-03644-5
Knihovny.cz E-resources
- Keywords
- Dialyzer, Hemocompatibility, Hemodiafiltration, Hydrophilicity, Membrane, Performance,
- MeSH
- beta 2-Microglobulin blood MeSH
- Kidney Failure, Chronic therapy MeSH
- Hemodiafiltration * instrumentation methods MeSH
- Hydrophobic and Hydrophilic Interactions * MeSH
- Cross-Over Studies * MeSH
- Middle Aged MeSH
- Humans MeSH
- Membranes, Artificial * MeSH
- Prospective Studies MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- beta 2-Microglobulin MeSH
- Membranes, Artificial * MeSH
BACKGROUND: Hemodialyzers should efficiently eliminate small and middle molecular uremic toxins and possess exceptional hemocompatibility to improve well-being of patients with end-stage kidney disease. However, performance and hemocompatibility get compromised during treatment due to adsorption of plasma proteins to the dialyzer membrane. Increased membrane hydrophilicity reduces protein adsorption to the membrane and was implemented in the novel FX CorAL dialyzer. The present randomized controlled trial compares performance and hemocompatibility profiles of the FX CorAL dialyzer to other commonly used dialyzers applied in hemodiafiltration treatments. METHODS: This prospective, open, controlled, multicentric, interventional, crossover study randomized stable patients on post-dilution online hemodiafiltration (HDF) to FX CorAL 600, FX CorDiax 600 (both Fresenius Medical Care) and xevonta Hi 15 (B. Braun) each for 4 weeks. Primary outcome was β2-microglobulin removal rate (β2-m RR). Non-inferiority and superiority of FX CorAL versus comparators were tested. Secondary endpoints were RR and/or clearance of small and middle molecules, and intra- and interdialytic profiles of hemocompatibility markers, with regards to complement activation, cell activation/inflammation, platelet activation and oxidative stress. Further endpoints were patient reported outcomes (PROs) and clinical safety. RESULTS: 82 patients were included and 76 analyzed as intention-to-treat (ITT) population. FX CorAL showed the highest β2-m RR (76.28%), followed by FX CorDiax (75.69%) and xevonta (74.48%). Non-inferiority to both comparators and superiority to xevonta were statistically significant. Secondary endpoints related to middle molecules corroborated these results; performance for small molecules was comparable between dialyzers. Regarding intradialytic hemocompatibility, FX CorAL showed lower complement, white blood cell, and platelet activation. There were no differences in interdialytic hemocompatibility, PROs, or clinical safety. CONCLUSIONS: The novel FX CorAL with increased membrane hydrophilicity showed strong performance and a favorable hemocompatibility profile as compared to other commonly used dialyzers in clinical practice. Further long-term investigations should examine whether the benefits of FX CorAL will translate into improved cardiovascular and mortality endpoints. TRIAL REGISTRATION: eMPORA III registration on 19/01/2021 at ClinicalTrials.gov (NCT04714281).
Diakonissenkrankenhaus Innere Medizin Abtlg Nephrologie 24939 Flensburg Germany
Fresenius Medical Care Global Medical Office Waltham MA USA
Fresenius Nephrocare Nymburk Nymburk 28802 Czechia
Fresenius Nephrocare Praha 9 Praha 19061 Czechia
Nieren und Gefäßzentrum Kiel 24106 Kiel Germany
Ottillinger Life Sciences 85649 Brunnthal Germany
Péterfy 2 Dialízis Központ Budapest 1077 Hungary
PHV Dialysezentrum Goslar 38642 Goslar Germany
Váci Dialízis Központ Vác 2600 Hungary
Zentrum für Nieren Hochdruck und Stoffwechselerkrankungen 30453 Hannover Germany
See more in PubMed
Hoenich NA. Update on the biocompatibility of hemodialysis membranes. Hong Kong J Nephrol. 2004;6(2):74–8. doi: 10.1016/S1561-5413(09)60162-9. DOI
Peinemann K, Pereira Nunes S. Membranes for Life Sciences | Wiley. Wiley.com. Accessed May 13, 2021. https://www.wiley.com/en-cl/Membranes+for+Life+Sciences-p-9783527314805.
Henderson LW, Clark WR, Cheung AK. Quantification of middle molecular weight solute removal in dialysis. Semin Dial. 2001;14(4):294–9. doi: 10.1046/j.1525-139x.2001.00068.x. PubMed DOI
Lang T, Zawada AM, Theis L, et al. Hemodiafiltration: Technical and Medical insights. Bioengineering. 2023;10(2):145. doi: 10.3390/bioengineering10020145. PubMed DOI PMC
van Ypersele C, Jadoul M, Malghem J, Maldague B, Jamart J. Effect of dialysis membrane and patient’s age on signs of dialysis-related amyloidosis. The Working Party on Dialysis Amyloidosis. Kidney Int. 1991;39(5):1012–9. doi: 10.1038/ki.1991.128. PubMed DOI
McCarthy JT, Williams AW, Johnson WJ. Serum beta 2-microglobulin concentration in dialysis patients: importance of intrinsic renal function. J Lab Clin Med. 1994;123(4):495–505. PubMed
Okuno S, Ishimura E, Kohno K, et al. Serum beta2-microglobulin level is a significant predictor of mortality in maintenance haemodialysis patients. Nephrol Dial Transpl. 2009;24(2):571–7. doi: 10.1093/ndt/gfn521. PubMed DOI
Cheung AK, Rocco MV, Yan G, et al. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol. 2006;17(2):546–55. doi: 10.1681/ASN.2005020132. PubMed DOI
Melchior P, Erlenkötter A, Zawada AM, et al. Complement activation by dialysis membranes and its association with secondary membrane formation and surface charge. Artif organs. Published Online Febr. 2021;13:aor13887. doi: 10.1111/aor.13887. PubMed DOI
Zawada AM, Melchior P, Erlenkötter A, Delinski D, Stauss-Grabo M, Kennedy JP. Polyvinylpyrrolidone in hemodialysis membranes: impact on platelet loss during hemodialysis. Hemodial Int Published Online June. 2021;4:hdi12939. doi: 10.1111/hdi.12939. PubMed DOI
Ehlerding G, Ries W, Kempkes-Koch M et al. Randomized comparison of three high-flux dialyzers during high volume online hemodiafiltration – the comPERFORM study. Clin Kidney J. Published online 2021. PubMed PMC
Zhu L, Song H, Zhang D, Wang G, Zeng Z, Xue Q. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization. J Colloid Interface Sci. 2017;498:136–43. doi: 10.1016/j.jcis.2017.03.055. PubMed DOI
Hayama M, Yamamoto K, ichiro, Kohori F, Sakai K. How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? J Membrane Sci - J MEMBRANE SCI. 2004;234:41–9. doi: 10.1016/j.memsci.2004.01.020. DOI
Hayama M, Yamamoto K, ichiro, Kohori F, et al. Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film. Biomaterials. 2004;25(6):1019–28. doi: 10.1016/s0142-9612(03)00629-x. PubMed DOI
Haq Z, Wang X, Cheng Q, et al. Bisphenol A and Bisphenol S in Hemodialyzers. Toxins. 2023;15(7):465. doi: 10.3390/toxins15070465. PubMed DOI PMC
Wang H, Yu T, Zhao C, Du Q. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers Polym - FIBER POLYM. 2009;10:1–5. doi: 10.1007/s12221-009-0001-4. DOI
Zawada AM, Emal K, Förster E, et al. Hydrophilic modification of Dialysis membranes sustains middle molecule removal and filtration characteristics. Membranes. 2024;14(4):83. doi: 10.3390/membranes14040083. PubMed DOI PMC
Alvarez-de Lara MA, Martín-Malo A. Hypersensitivity reactions to synthetic haemodialysis membranes - an emerging issue? Nefrologia. 2014;34(6):698–702. doi: 10.3265/Nefrologia.pre2014.Jul.12682. PubMed DOI
Kempkes-Koch M, Stauss-Grabo M, Erlenkötter A, MO387 CLINICAL PERFORMANCE, HEMOCOMPATIBILITY AND SAFETY OF A NEW DIALYZER WITH A MODIFIED POLYSULFONE MEMBRANE et al. Nephrol Dialysis Transplantation. 2021;36(Supplement1):gfab0820041. doi: 10.1093/ndt/gfab082.0041. DOI
Ehlerding G, Erlenkötter A, Gauly A et al. Performance and hemocompatibility of a novel polysulfone dialyzer: a randomized controlled trial. Kidney360. Published online January 1, 2021:10.34067/KID.0000302021. PubMed PMC
Zawada AM, Lang T, Ottillinger B, Kircelli F, Stauss-Grabo M, Kennedy JP. Impact of hydrophilic modification of synthetic Dialysis membranes on hemocompatibility and performance. Membranes. 2022;12(10):932. doi: 10.3390/membranes12100932. PubMed DOI PMC
Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4. PubMed DOI
Hays RD, Kallich J, Mapes D et al. Kidney Disease Quality of Life Short Form (KDQOL-SF™), Version 1.3: A Manual for Use and Scoring. RAND Corporation; 1997. Accessed May 16, 2023. https://www.rand.org/pubs/papers/P7994.html.
Phan NQ, Blome C, Fritz F, et al. Assessment of pruritus intensity: prospective study on validity and reliability of the visual analogue scale, numerical rating scale and verbal rating scale in 471 patients with chronic pruritus. Acta Derm Venereol. 2012;92(5):502–7. doi: 10.2340/00015555-1246. PubMed DOI
Storck M, Sandmann S, Bruland P, et al. Pruritus Intensity scales across Europe: a prospective validation study. J Eur Acad Dermatol Venereol. 2021;35(5):1176–85. doi: 10.1111/jdv.17111. PubMed DOI
Verweyen E, Ständer S, Kreitz K, et al. Validation of a Comprehensive Set of Pruritus Assessment instruments: the chronic Pruritus Tools Questionnaire PRURITOOLS. Acta Derm Venereol. 2019;99(7):657–63. doi: 10.2340/00015555-3158. PubMed DOI
Yosipovitch G, Reaney M, Mastey V, et al. Peak Pruritus Numerical Rating Scale: psychometric validation and responder definition for assessing itch in moderate-to-severe atopic dermatitis. Br J Dermatol. 2019;181(4):761–9. doi: 10.1111/bjd.17744. PubMed DOI PMC
Walters AS, LeBrocq C, Dhar A, et al. Validation of the International Restless Legs Syndrome Study Group rating scale for restless legs syndrome. Sleep Med. 2003;4(2):121–32. doi: 10.1016/s1389-9457(02)00258-7. PubMed DOI
Wunderlich GR, Evans KR, Sills T, et al. An item response analysis of the international restless legs syndrome study group rating scale for restless legs syndrome. Sleep Med. 2005;6(2):131–9. doi: 10.1016/j.sleep.2004.10.010. PubMed DOI
Abetz L, Arbuckle R, Allen RP, et al. The reliability, validity and responsiveness of the International Restless Legs Syndrome Study Group rating scale and subscales in a clinical-trial setting. Sleep Med. 2006;7(4):340–9. doi: 10.1016/j.sleep.2005.12.011. PubMed DOI
Bretz F, Maurer W, Brannath W, Posch M. A graphical approach to sequentially rejective multiple test procedures. Statist Med. 2009;28(4):586–604. doi: 10.1002/sim.3495. PubMed DOI
Maduell F, Arias-Guillen M, Fontseré N, et al. Elimination of large uremic toxins by a dialyzer specifically designed for high-volume convective therapies. Blood Purif. 2014;37(2):125–30. doi: 10.1159/000358214. PubMed DOI
Gotch FA, Panlilio FM, Buyaki RA, Wang EX, Folden TI, Levin NW. Mechanisms determining the ratio of conductivity clearance to urea clearance. Kidney Int Suppl. 2004;89S3–24. 10.1111/j.1523-1755.2004.00759.x. PubMed
Poppelaars F, Faria B, Gaya da Costa M, et al. The complement system in Dialysis: a Forgotten Story? Front Immunol. 2018;9:71. doi: 10.3389/fimmu.2018.00071. PubMed DOI PMC
Campo S, Lacquaniti A, Trombetta D, Smeriglio A, Monardo P. Immune System dysfunction and inflammation in Hemodialysis patients: two sides of the same Coin. J Clin Med. 2022;11(13):3759. doi: 10.3390/jcm11133759. PubMed DOI PMC
Kakuta T, Komaba H, Takagi N, et al. A prospective Multicenter Randomized Controlled Study on Interleukin-6 removal and induction by a new Hemodialyzer with Improved Biocompatibility in Hemodialysis patients: a pilot study: study on IL-6 removal by a new Hemodialyzer. Ther Apher Dial. 2016;20(6):569–78. doi: 10.1111/1744-9987.12454. PubMed DOI
Quiroga B, Muñoz Ramos P, Giorgi M, et al. Dynamic assessment of interleukin-6 during hemodialysis and mortality in coronavirus disease‐19. Ther Apher Dial. 2021;25(6):908–16. doi: 10.1111/1744-9987.13626. PubMed DOI PMC
Fukushi T, Yamamoto T, Yoshida M, Fujikura E, Miyazaki M, Nakayama M. Enhanced neutrophil apoptosis accompanying myeloperoxidase release during hemodialysis. Sci Rep. 2020;10(1):21747. doi: 10.1038/s41598-020-78742-z. PubMed DOI PMC
Bieber S, Muczynski KA, Lood C. Neutrophil activation and neutrophil extracellular trap formation in Dialysis patients. Kidney Med. 2020;2(6):692–e6981. doi: 10.1016/j.xkme.2020.06.014. PubMed DOI PMC
Théorêt JF, Bienvenu JG, Kumar A, Merhi Y. P-selectin antagonism with recombinant p-selectin glycoprotein ligand-1 (rPSGL-Ig) inhibits circulating activated platelet binding to neutrophils induced by damaged arterial surfaces. J Pharmacol Exp Ther. 2001;298(2):658–64. PubMed
Molina P, Ojeda R, Blanco A, et al. Etiopathogenesis of chronic kidney disease-associated pruritus: putting the pieces of the puzzle together. Nefrología (English Edition) 2023;43(1):48–62. doi: 10.1016/j.nefroe.2023.03.015. PubMed DOI
Higuchi T, Abe M, Mizuno M, et al. Association of restless legs syndrome with oxidative stress and inflammation in patients undergoing hemodialysis. Sleep Med. 2015;16(8):941–8. doi: 10.1016/j.sleep.2015.03.025. PubMed DOI
Matura LA, Malone S, Jaime-Lara R, Riegel B. A systematic review of biological mechanisms of fatigue in chronic illness. Biol Res Nurs. 2018;20(4):410–21. doi: 10.1177/1099800418764326. PubMed DOI PMC
Wolf M, Zhang H, Winter A, et al. Real-world clinical performance evaluation of the FX CorAL dialyzer: a retrospective cohort study (PO0793) J Am Soc Nephrol. 2021;32:177. doi: 10.1681/ASN.20213210S1277c. PubMed DOI
Oshihara W, Ueno Y, Fujieda H. A New Polysulfone Membrane Dialyzer, NV, with Low-Fouling and Antithrombotic Properties. In: Kawanishi H, Takemoto Y,. Contributions to Nephrology. Vol 189. S. Karger AG; 2017:222–229. 10.1159/000450805. PubMed
Poppelaars F, Gaya da Costa M, Faria B, et al. Intradialytic complement activation precedes the Development of Cardiovascular events in Hemodialysis patients. Front Immunol. 2018;9:2070. doi: 10.3389/fimmu.2018.02070. PubMed DOI PMC
ClinicalTrials.gov
NCT04714281