• This record comes from PubMed

Randomized investigation of increased dialyzer membrane hydrophilicity on hemocompatibility and performance

. 2024 Jul 10 ; 25 (1) : 220. [epub] 20240710

Language English Country England, Great Britain Media electronic

Document type Journal Article, Randomized Controlled Trial, Multicenter Study

Links

PubMed 38987671
PubMed Central PMC11234537
DOI 10.1186/s12882-024-03644-5
PII: 10.1186/s12882-024-03644-5
Knihovny.cz E-resources

BACKGROUND: Hemodialyzers should efficiently eliminate small and middle molecular uremic toxins and possess exceptional hemocompatibility to improve well-being of patients with end-stage kidney disease. However, performance and hemocompatibility get compromised during treatment due to adsorption of plasma proteins to the dialyzer membrane. Increased membrane hydrophilicity reduces protein adsorption to the membrane and was implemented in the novel FX CorAL dialyzer. The present randomized controlled trial compares performance and hemocompatibility profiles of the FX CorAL dialyzer to other commonly used dialyzers applied in hemodiafiltration treatments. METHODS: This prospective, open, controlled, multicentric, interventional, crossover study randomized stable patients on post-dilution online hemodiafiltration (HDF) to FX CorAL 600, FX CorDiax 600 (both Fresenius Medical Care) and xevonta Hi 15 (B. Braun) each for 4 weeks. Primary outcome was β2-microglobulin removal rate (β2-m RR). Non-inferiority and superiority of FX CorAL versus comparators were tested. Secondary endpoints were RR and/or clearance of small and middle molecules, and intra- and interdialytic profiles of hemocompatibility markers, with regards to complement activation, cell activation/inflammation, platelet activation and oxidative stress. Further endpoints were patient reported outcomes (PROs) and clinical safety. RESULTS: 82 patients were included and 76 analyzed as intention-to-treat (ITT) population. FX CorAL showed the highest β2-m RR (76.28%), followed by FX CorDiax (75.69%) and xevonta (74.48%). Non-inferiority to both comparators and superiority to xevonta were statistically significant. Secondary endpoints related to middle molecules corroborated these results; performance for small molecules was comparable between dialyzers. Regarding intradialytic hemocompatibility, FX CorAL showed lower complement, white blood cell, and platelet activation. There were no differences in interdialytic hemocompatibility, PROs, or clinical safety. CONCLUSIONS: The novel FX CorAL with increased membrane hydrophilicity showed strong performance and a favorable hemocompatibility profile as compared to other commonly used dialyzers in clinical practice. Further long-term investigations should examine whether the benefits of FX CorAL will translate into improved cardiovascular and mortality endpoints. TRIAL REGISTRATION: eMPORA III registration on 19/01/2021 at ClinicalTrials.gov (NCT04714281).

See more in PubMed

Hoenich NA. Update on the biocompatibility of hemodialysis membranes. Hong Kong J Nephrol. 2004;6(2):74–8. doi: 10.1016/S1561-5413(09)60162-9. DOI

Peinemann K, Pereira Nunes S. Membranes for Life Sciences | Wiley. Wiley.com. Accessed May 13, 2021. https://www.wiley.com/en-cl/Membranes+for+Life+Sciences-p-9783527314805.

Henderson LW, Clark WR, Cheung AK. Quantification of middle molecular weight solute removal in dialysis. Semin Dial. 2001;14(4):294–9. doi: 10.1046/j.1525-139x.2001.00068.x. PubMed DOI

Lang T, Zawada AM, Theis L, et al. Hemodiafiltration: Technical and Medical insights. Bioengineering. 2023;10(2):145. doi: 10.3390/bioengineering10020145. PubMed DOI PMC

van Ypersele C, Jadoul M, Malghem J, Maldague B, Jamart J. Effect of dialysis membrane and patient’s age on signs of dialysis-related amyloidosis. The Working Party on Dialysis Amyloidosis. Kidney Int. 1991;39(5):1012–9. doi: 10.1038/ki.1991.128. PubMed DOI

McCarthy JT, Williams AW, Johnson WJ. Serum beta 2-microglobulin concentration in dialysis patients: importance of intrinsic renal function. J Lab Clin Med. 1994;123(4):495–505. PubMed

Okuno S, Ishimura E, Kohno K, et al. Serum beta2-microglobulin level is a significant predictor of mortality in maintenance haemodialysis patients. Nephrol Dial Transpl. 2009;24(2):571–7. doi: 10.1093/ndt/gfn521. PubMed DOI

Cheung AK, Rocco MV, Yan G, et al. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol. 2006;17(2):546–55. doi: 10.1681/ASN.2005020132. PubMed DOI

Melchior P, Erlenkötter A, Zawada AM, et al. Complement activation by dialysis membranes and its association with secondary membrane formation and surface charge. Artif organs. Published Online Febr. 2021;13:aor13887. doi: 10.1111/aor.13887. PubMed DOI

Zawada AM, Melchior P, Erlenkötter A, Delinski D, Stauss-Grabo M, Kennedy JP. Polyvinylpyrrolidone in hemodialysis membranes: impact on platelet loss during hemodialysis. Hemodial Int Published Online June. 2021;4:hdi12939. doi: 10.1111/hdi.12939. PubMed DOI

Ehlerding G, Ries W, Kempkes-Koch M et al. Randomized comparison of three high-flux dialyzers during high volume online hemodiafiltration – the comPERFORM study. Clin Kidney J. Published online 2021. PubMed PMC

Zhu L, Song H, Zhang D, Wang G, Zeng Z, Xue Q. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization. J Colloid Interface Sci. 2017;498:136–43. doi: 10.1016/j.jcis.2017.03.055. PubMed DOI

Hayama M, Yamamoto K, ichiro, Kohori F, Sakai K. How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? J Membrane Sci - J MEMBRANE SCI. 2004;234:41–9. doi: 10.1016/j.memsci.2004.01.020. DOI

Hayama M, Yamamoto K, ichiro, Kohori F, et al. Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film. Biomaterials. 2004;25(6):1019–28. doi: 10.1016/s0142-9612(03)00629-x. PubMed DOI

Haq Z, Wang X, Cheng Q, et al. Bisphenol A and Bisphenol S in Hemodialyzers. Toxins. 2023;15(7):465. doi: 10.3390/toxins15070465. PubMed DOI PMC

Wang H, Yu T, Zhao C, Du Q. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers Polym - FIBER POLYM. 2009;10:1–5. doi: 10.1007/s12221-009-0001-4. DOI

Zawada AM, Emal K, Förster E, et al. Hydrophilic modification of Dialysis membranes sustains middle molecule removal and filtration characteristics. Membranes. 2024;14(4):83. doi: 10.3390/membranes14040083. PubMed DOI PMC

Alvarez-de Lara MA, Martín-Malo A. Hypersensitivity reactions to synthetic haemodialysis membranes - an emerging issue? Nefrologia. 2014;34(6):698–702. doi: 10.3265/Nefrologia.pre2014.Jul.12682. PubMed DOI

Kempkes-Koch M, Stauss-Grabo M, Erlenkötter A, MO387 CLINICAL PERFORMANCE, HEMOCOMPATIBILITY AND SAFETY OF A NEW DIALYZER WITH A MODIFIED POLYSULFONE MEMBRANE et al. Nephrol Dialysis Transplantation. 2021;36(Supplement1):gfab0820041. doi: 10.1093/ndt/gfab082.0041. DOI

Ehlerding G, Erlenkötter A, Gauly A et al. Performance and hemocompatibility of a novel polysulfone dialyzer: a randomized controlled trial. Kidney360. Published online January 1, 2021:10.34067/KID.0000302021. PubMed PMC

Zawada AM, Lang T, Ottillinger B, Kircelli F, Stauss-Grabo M, Kennedy JP. Impact of hydrophilic modification of synthetic Dialysis membranes on hemocompatibility and performance. Membranes. 2022;12(10):932. doi: 10.3390/membranes12100932. PubMed DOI PMC

Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4. PubMed DOI

Hays RD, Kallich J, Mapes D et al. Kidney Disease Quality of Life Short Form (KDQOL-SF™), Version 1.3: A Manual for Use and Scoring. RAND Corporation; 1997. Accessed May 16, 2023. https://www.rand.org/pubs/papers/P7994.html.

Phan NQ, Blome C, Fritz F, et al. Assessment of pruritus intensity: prospective study on validity and reliability of the visual analogue scale, numerical rating scale and verbal rating scale in 471 patients with chronic pruritus. Acta Derm Venereol. 2012;92(5):502–7. doi: 10.2340/00015555-1246. PubMed DOI

Storck M, Sandmann S, Bruland P, et al. Pruritus Intensity scales across Europe: a prospective validation study. J Eur Acad Dermatol Venereol. 2021;35(5):1176–85. doi: 10.1111/jdv.17111. PubMed DOI

Verweyen E, Ständer S, Kreitz K, et al. Validation of a Comprehensive Set of Pruritus Assessment instruments: the chronic Pruritus Tools Questionnaire PRURITOOLS. Acta Derm Venereol. 2019;99(7):657–63. doi: 10.2340/00015555-3158. PubMed DOI

Yosipovitch G, Reaney M, Mastey V, et al. Peak Pruritus Numerical Rating Scale: psychometric validation and responder definition for assessing itch in moderate-to-severe atopic dermatitis. Br J Dermatol. 2019;181(4):761–9. doi: 10.1111/bjd.17744. PubMed DOI PMC

Walters AS, LeBrocq C, Dhar A, et al. Validation of the International Restless Legs Syndrome Study Group rating scale for restless legs syndrome. Sleep Med. 2003;4(2):121–32. doi: 10.1016/s1389-9457(02)00258-7. PubMed DOI

Wunderlich GR, Evans KR, Sills T, et al. An item response analysis of the international restless legs syndrome study group rating scale for restless legs syndrome. Sleep Med. 2005;6(2):131–9. doi: 10.1016/j.sleep.2004.10.010. PubMed DOI

Abetz L, Arbuckle R, Allen RP, et al. The reliability, validity and responsiveness of the International Restless Legs Syndrome Study Group rating scale and subscales in a clinical-trial setting. Sleep Med. 2006;7(4):340–9. doi: 10.1016/j.sleep.2005.12.011. PubMed DOI

Bretz F, Maurer W, Brannath W, Posch M. A graphical approach to sequentially rejective multiple test procedures. Statist Med. 2009;28(4):586–604. doi: 10.1002/sim.3495. PubMed DOI

Maduell F, Arias-Guillen M, Fontseré N, et al. Elimination of large uremic toxins by a dialyzer specifically designed for high-volume convective therapies. Blood Purif. 2014;37(2):125–30. doi: 10.1159/000358214. PubMed DOI

Gotch FA, Panlilio FM, Buyaki RA, Wang EX, Folden TI, Levin NW. Mechanisms determining the ratio of conductivity clearance to urea clearance. Kidney Int Suppl. 2004;89S3–24. 10.1111/j.1523-1755.2004.00759.x. PubMed

Poppelaars F, Faria B, Gaya da Costa M, et al. The complement system in Dialysis: a Forgotten Story? Front Immunol. 2018;9:71. doi: 10.3389/fimmu.2018.00071. PubMed DOI PMC

Campo S, Lacquaniti A, Trombetta D, Smeriglio A, Monardo P. Immune System dysfunction and inflammation in Hemodialysis patients: two sides of the same Coin. J Clin Med. 2022;11(13):3759. doi: 10.3390/jcm11133759. PubMed DOI PMC

Kakuta T, Komaba H, Takagi N, et al. A prospective Multicenter Randomized Controlled Study on Interleukin-6 removal and induction by a new Hemodialyzer with Improved Biocompatibility in Hemodialysis patients: a pilot study: study on IL-6 removal by a new Hemodialyzer. Ther Apher Dial. 2016;20(6):569–78. doi: 10.1111/1744-9987.12454. PubMed DOI

Quiroga B, Muñoz Ramos P, Giorgi M, et al. Dynamic assessment of interleukin-6 during hemodialysis and mortality in coronavirus disease‐19. Ther Apher Dial. 2021;25(6):908–16. doi: 10.1111/1744-9987.13626. PubMed DOI PMC

Fukushi T, Yamamoto T, Yoshida M, Fujikura E, Miyazaki M, Nakayama M. Enhanced neutrophil apoptosis accompanying myeloperoxidase release during hemodialysis. Sci Rep. 2020;10(1):21747. doi: 10.1038/s41598-020-78742-z. PubMed DOI PMC

Bieber S, Muczynski KA, Lood C. Neutrophil activation and neutrophil extracellular trap formation in Dialysis patients. Kidney Med. 2020;2(6):692–e6981. doi: 10.1016/j.xkme.2020.06.014. PubMed DOI PMC

Théorêt JF, Bienvenu JG, Kumar A, Merhi Y. P-selectin antagonism with recombinant p-selectin glycoprotein ligand-1 (rPSGL-Ig) inhibits circulating activated platelet binding to neutrophils induced by damaged arterial surfaces. J Pharmacol Exp Ther. 2001;298(2):658–64. PubMed

Molina P, Ojeda R, Blanco A, et al. Etiopathogenesis of chronic kidney disease-associated pruritus: putting the pieces of the puzzle together. Nefrología (English Edition) 2023;43(1):48–62. doi: 10.1016/j.nefroe.2023.03.015. PubMed DOI

Higuchi T, Abe M, Mizuno M, et al. Association of restless legs syndrome with oxidative stress and inflammation in patients undergoing hemodialysis. Sleep Med. 2015;16(8):941–8. doi: 10.1016/j.sleep.2015.03.025. PubMed DOI

Matura LA, Malone S, Jaime-Lara R, Riegel B. A systematic review of biological mechanisms of fatigue in chronic illness. Biol Res Nurs. 2018;20(4):410–21. doi: 10.1177/1099800418764326. PubMed DOI PMC

Wolf M, Zhang H, Winter A, et al. Real-world clinical performance evaluation of the FX CorAL dialyzer: a retrospective cohort study (PO0793) J Am Soc Nephrol. 2021;32:177. doi: 10.1681/ASN.20213210S1277c. PubMed DOI

Oshihara W, Ueno Y, Fujieda H. A New Polysulfone Membrane Dialyzer, NV, with Low-Fouling and Antithrombotic Properties. In: Kawanishi H, Takemoto Y,. Contributions to Nephrology. Vol 189. S. Karger AG; 2017:222–229. 10.1159/000450805. PubMed

Poppelaars F, Gaya da Costa M, Faria B, et al. Intradialytic complement activation precedes the Development of Cardiovascular events in Hemodialysis patients. Front Immunol. 2018;9:2070. doi: 10.3389/fimmu.2018.02070. PubMed DOI PMC

See more in PubMed

ClinicalTrials.gov
NCT04714281

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...