Click chemistry-based tracking reveals putative cell wall-located auxin binding sites in expanding cells

. 2017 Nov 22 ; 7 (1) : 15988. [epub] 20171122

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29167548
Odkazy

PubMed 29167548
PubMed Central PMC5700113
DOI 10.1038/s41598-017-16281-w
PII: 10.1038/s41598-017-16281-w
Knihovny.cz E-zdroje

Auxin is a key plant regulatory molecule, which acts upon a plethora of cellular processes, including those related to cell differentiation and elongation. Despite the stunning progress in all disciplines of auxin research, the mechanisms of auxin-mediated rapid promotion of cell expansion and underlying rearrangement of cell wall components are poorly understood. This is partly due to the limitations of current methodologies for probing auxin. Here we describe a click chemistry-based approach, using an azido derivative of indole-3-propionic acid. This compound is as an active auxin analogue, which can be tagged in situ. Using this new tool, we demonstrate the existence of putative auxin binding sites in the cell walls of expanding/elongating cells. These binding sites are of protein nature but are distinct from those provided by the extensively studied AUXIN BINDING PROTEIN 1 (ABP1). Using immunohistochemistry, we have shown the apoplastic presence of endogenous auxin epitopes recognised by an anti-IAA antibody. Our results are intriguingly in line with previous observations suggesting some transcription-independent (non-genomic) activity of auxin in cell elongation.

Zobrazit více v PubMed

Enders TA, Strader LC. Auxin activity: Past, present, and future. Am. J. Bot. 2015;102:180–196. doi: 10.3732/ajb.1400285. PubMed DOI PMC

Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI

Habets ME, Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol. 2014;203:362–377. doi: 10.1111/nph.12831. PubMed DOI

Salehin M, Bagchi R, Estelle M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell. 2015;27:9–19. doi: 10.1105/tpc.114.133744. PubMed DOI PMC

Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC

Grones P, Friml J. Auxin transporters and binding proteins at a glance. J. Cell Sci. 2015;128:1–7. doi: 10.1242/jcs.159418. PubMed DOI

Hager A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J. Plant Res. 2003;116:483–505. doi: 10.1007/s10265-003-0110-x. PubMed DOI

McQueen-Mason S, Cosgrove DJ. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl. Acad. Sci. USA. 1994;91:6574–6578. doi: 10.1073/pnas.91.14.6574. PubMed DOI PMC

Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 2015;25:162–172. doi: 10.1016/j.pbi.2015.05.014. PubMed DOI PMC

Schenck D, Christian M, Jones A, Lüthen H. Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited. Plant Physiol. 2010;152:1183–1185. doi: 10.1104/pp.109.149591. PubMed DOI PMC

Takahashi K, Hayashi K, Kinoshita T. Auxin activates the plasma membrane H+ -ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 2012;159:632–641. doi: 10.1104/pp.112.196428. PubMed DOI PMC

Spartz AK, et al. SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+ -ATPases to Promote Cell Expansion in Arabidopsis. Plant Cell. 2014;26:2129–2142. doi: 10.1105/tpc.114.126037. PubMed DOI PMC

Fendrych, M., Leung, J. & Friml, J. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. Elife. e19048 (2016). PubMed PMC

Barbez E, Dünser K, Gaidora A, Lendl T, Busch W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2017;114:E4884–E4893. doi: 10.1073/pnas.1613499114. PubMed DOI PMC

Evans ML, Ishikawa H, Estelle MA. Responses of Arabidopsis roots to auxin studied with high temporal resolution: Comparison of wild type and auxin-response mutants. Planta. 1994;194:215–222. doi: 10.1007/BF01101680. DOI

Friml J, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI

Sokołowska K, Kizińska J, Szewczuk Z, Banasiak A. Auxin conjugated to fluorescent dyes–a tool for the analysis of auxin transport pathways. Plant Biol. (Stuttg). 2014;16:866–877. doi: 10.1111/plb.12144. PubMed DOI

Hayashi K, et al. Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc. Natl. Acad. Sci. USA. 2014;111:11557–11562. doi: 10.1073/pnas.1408960111. PubMed DOI PMC

Pasternak T, et al. Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods. 2015;11:50. doi: 10.1186/s13007-015-0094-2. PubMed DOI PMC

Rostovtsev V, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI

Horisawa K. Specific and quantitative labeling of biomolecules using click chemistry. Front. Physiol. 2014;5:457. doi: 10.3389/fphys.2014.00457. PubMed DOI PMC

Anderson CT, Wallace IS, Somerville CR. Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. Proc. Natl. Acad. Sci. USA. 2012;109:1329–1334. doi: 10.1073/pnas.1120429109. PubMed DOI PMC

Leonard NJ, Greenfield JC. Photoaffinity-labeled Auxins: Synthesis and Biological Activity. New Phytol. 1975;55:1057–1061. PubMed PMC

Melhado LL, Jones AM, Leonard NJ, Vanderhoef LN. Azido auxins: synthesis and biological activity of fluorescent photoaffinity labeling agents. Plant Physiol. 1981;68:469–475. doi: 10.1104/pp.68.2.469. PubMed DOI PMC

Jones AM, Melhado LL, Ho TH, Pearce CJ, Leonard NJ. Azido auxins: photoaffinity labeling of auxin-binding proteins in maize coleoptile with tritiated 5-azidoindole-3-acetic Acid. Plant Physiol. 1984;75:1111–1116. doi: 10.1104/pp.75.4.1111. PubMed DOI PMC

Hermanson, G. T. Bioconjugate Techniques, 3rd edition, Cambridge, UK: Academic Press (2013).

Segal LM, Wightman F. Gas chromatographic and GC-MS evidence for the occurrence of 3-indolylpropionic acid and 3-incolylacetic acid in seedlings of Cucurbita pepo. Physiol. Plant. 1982;56:367–370. doi: 10.1111/j.1399-3054.1982.tb00354.x. DOI

Badenoch-Jones J, Summons RE, Rolfe BG. & Letham D. S. Phytohormones, Rhizobium mutants and nodulation in legumes. IV. Auxin metabolites in pea root nodules. J. Plant Growth Regul. 1984;3:23–39. doi: 10.1007/BF02041989. DOI

Simon S, et al. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. New Phytol. 2013;200:1034–1048. doi: 10.1111/nph.12437. PubMed DOI

Ma Q, Robert S. Auxin biology revealed by small molecules. Physiol. Plant. 2014;151:25–42. doi: 10.1111/ppl.12128. PubMed DOI

Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell. 2000;12:507–518. doi: 10.1105/tpc.12.4.507. PubMed DOI PMC

Gälweiler L, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1998;282:2226–2230. doi: 10.1126/science.282.5397.2226. PubMed DOI

Liao CY, et al. Reporters for sensitive and quantitative measurement of auxin response. Nat Methods. 2015;12:207–210. doi: 10.1038/nmeth.3279. PubMed DOI PMC

Herth W, Schnepf E. The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma. 1980;105:129–133. doi: 10.1007/BF01279855. DOI

Lee RD, Cho HT. Auxin, the organizer of the hormonal/environmental signals for root hair growth. Front Plant Sci. 2013;4:448. PubMed PMC

Velasquez SM, Barbez E, Kleine-Vehn J, Estevez JM. Auxin and Cellular Elongation. Plant Physiol. 2016;170:1206–1215. PubMed PMC

Mendrinna A, Persson S. Root hair growth: it’s a one way street. F1000Prime Rep. 2015;7:23. doi: 10.12703/P7-23. PubMed DOI PMC

Mravec J, et al. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes. Development. 2014;141:4841–4850. doi: 10.1242/dev.113365. PubMed DOI

Jones AM. Auxin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. BioI. 1994;45:393–420. doi: 10.1146/annurev.pp.45.060194.002141. DOI

Jones AM, et al. Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science. 1998;282:1114–1117. doi: 10.1126/science.282.5391.1114. PubMed DOI

Chen JG, Ullah H, Young JC, Sussman MR, Jones AM. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev. 2001;15:902–911. doi: 10.1101/gad.866201. PubMed DOI PMC

Robert S, et al. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell. 2010;143:111–121. doi: 10.1016/j.cell.2010.09.027. PubMed DOI PMC

Tromas A, et al. Auxin-binding protein 1 is a negative regulator of the SCF(TIR1/AFB) pathway. Nat. Commun. 2013;4:2496. doi: 10.1038/ncomms3496. PubMed DOI

Xu T, et al. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science. 2014;343:1025–1028. doi: 10.1126/science.1245125. PubMed DOI PMC

Gao Y, et al. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsisdevelopment. Proc. Natl. Acad. Sci. USA. 2015;112:2275–2280. doi: 10.1073/pnas.1500365112. PubMed DOI PMC

Pedersen HL, et al. Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. J. Biol. Chem. 2012;28:39429–39438. doi: 10.1074/jbc.M112.396598. PubMed DOI PMC

Ding Z, et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Commun. 2012;3:941. doi: 10.1038/ncomms1941. PubMed DOI

Vidali L, Bezanilla M. Physcomitrella patens: a model for tip cell growth and differentiation. Curr. Opin. Plant Biol. 2012;15:625–631. doi: 10.1016/j.pbi.2012.09.008. PubMed DOI

Napier RM, Venis MA. Tansley review no. 79 auxin action and auxin-binding proteins. New Phytol. 1995;129:167–201. doi: 10.1111/j.1469-8137.1995.tb04291.x. PubMed DOI

Chen X, et al. Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature. 2014;516:90–93. doi: 10.1038/nature13766. PubMed DOI PMC

Baskin TI. Auxin inhibits expansion rate independently of cortical microtubules. Trends Plant Sci. 2015;20:471–472. doi: 10.1016/j.tplants.2015.05.008. PubMed DOI

Schopfer P, Palme K. Inhibition of Cell Expansion by Rapid ABP1-Mediated Auxin Effect on Microtubules? A Critical Comment. Plant Physiol. 2016;170:23–25. doi: 10.1104/pp.15.01403. PubMed DOI PMC

Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG, Grant-Downton RT. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol. 2013;197:668–679. doi: 10.1111/nph.12037. PubMed DOI

Pičmanová M, et al. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochem. J. 2015;469:375–389. doi: 10.1042/BJ20150390. PubMed DOI

Furuta KM, et al. Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science. 2014;345:933–937. doi: 10.1126/science.1253736. PubMed DOI

Van Damme D, et al. Somatic Cytokinesis and Pollen Maturation in Arabidopsis Depend on TPLATE, Which Has Domains Similar to Coat Proteins. Plant Cell. 2006;18:3502–3518. doi: 10.1105/tpc.106.040923. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace