Hematopoietic Stem Cell Transplantation Positively Affects the Natural History of Cancer in Nijmegen Breakage Syndrome
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
33082212
DOI
10.1158/1078-0432.ccr-20-2574
PII: 1078-0432.CCR-20-2574
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- incidence MeSH
- Kaplanův-Meierův odhad MeSH
- kohortové studie MeSH
- komorbidita MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory epidemiologie terapie MeSH
- následné studie MeSH
- prevalence MeSH
- syndrom Nijmegen breakage epidemiologie MeSH
- transplantace hematopoetických kmenových buněk metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Polsko epidemiologie MeSH
PURPOSE: Nijmegen breakage syndrome (NBS) is a DNA repair disorder with a high predisposition to hematologic malignancies. EXPERIMENTAL DESIGN: We describe the natural history of NBS, including cancer incidence, risk of death, and the potential effectiveness of hematopoietic stem cell transplantation (HSCT) in preventing both pathologies: malignancy and immunodeficiency. RESULTS: Among 241 patients with NBS enrolled in the study from 11 countries, 151 (63.0%) patients were diagnosed with cancer. Incidence rates for primary and secondary cancer, tumor characteristics, and risk factors affecting overall survival (OS) were estimated. The cumulative cancer incidence was 40.21% ± 3.5% and 77.78% ± 3.4% at 10 years and 20 years of follow-up, respectively. Most of the tumors n = 95 (62.9%) were non-Hodgkin lymphomas. Overall, 20 (13.2%) secondary malignancies occurred at a median age of 18 (interquartile range, 13.7-21.5) years. The probability of 20-year overall survival (OS) for the whole cohort was 44.6% ± 4.5%. Patients who developed cancer had a shorter 20-year OS than those without malignancy (29.6% vs. 86.2%; P < 10-5). A total of 49 patients with NBS underwent HSCT, including 14 patients transplanted before malignancy. Patients with NBS with diagnosed cancer who received HSCT had higher 20-year OS than those who did not (42.7% vs. 30.3%; P = 0.038, respectively). In the group of patients who underwent preemptive transplantation, only 1 patient developed cancer, which is 6.7 times lower as compared with nontransplanted patients [incidence rate ratio 0.149 (95% confidence interval, 0.138-0.162); P < 0.0001]. CONCLUSIONS: There is a beneficial effect of HSCT on the long-term survival of patients with NBS transplanted in their first complete remission of cancer.
Belarusian Research Center for Pediatric Oncology and Hematology Minsk Belarus
Department of Biostatistics and Translational Medicine Medical University of Lodz Lodz Poland
Department of Hematology Oncology and Internal Medicine Medical University of Warsaw Warsaw Poland
Department of Immunology Children's Memorial Health Institute Warsaw Poland
Department of Medical Genetics The Children's Memorial Health Institute Warsaw Poland
Department of Oncology Children's Memorial Health Institute Warsaw Poland
Department of Pediatric Hematology and Oncology Oslo University Hospital Oslo Norway
Department of Pediatric Hematology and Oncology University Hospital Heidelberg Germany
Department of Pediatric Hematology Oncology and Transplantology Medical University of Lublin Poland
Department of Pediatric Oncology Poznan University of Medical Sciences Poznan Poland
Department of Pediatrics Hannover Medical School Hannover Germany
Department of Radiation Oncology Dana Farber Cancer Institute Boston Massachusetts
Department Pediatrics Oncology and Hematology Medical University of Lodz Lodz Poland
Dr von Hauner University Children's Hospital Ludwig Maximilians University Munich Germany
Great Ormond Street Hospital for Children NHS Foundation Trust London United Kingdom
Histocompatibility Laboratory Children's Memorial Health Institute Warsaw Poland
Pediatric Department St Olav University Hospital Trondheim Norway
Zobrazit více v PubMed
Chrzanowska KH, Gregorek H, Dembowska-Bagińska B, Kalina MA, Digweed M. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7:13.
Varon R VC, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93:467–76.
Varon R, Seemanova E, Chrzanowska K, Hnateyko O, Piekutowska-Abramczuk D, Krajewska-Walasek M, et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet. 2000;8:900–2.
de Miranda NF, Björkman A, Pan-Hammarström Q. DNA repair: the link between primary immunodeficiency and cancer. Ann N Y Acad Sci. 2011;1246:50–63.
Wolska-Kuśnierz B, Gregorek H, Chrzanowska K, Piątosa B, Pietrucha B, Heropolitańska-Pliszka E, et al. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options – a retrospective analysis. J Clin Immunol. 2015;35:538–49.
Bienemann K, Burkhardt B, Modlich S, Meyer U, Möricke A, Bienemann K, et al. Promising therapy results for lymphoid malignancies in children with chromosomal breakage syndromes (Ataxia teleangiectasia or Nijmegen-breakage syndrome): a retrospective survey. Br J Haematol. 2011;155:468–76.
Pastorczak A, Szczepanski T, Mlynarski W. Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome. Eur J Med Genet. 2016;59:126–32.
Dembowska-Baginska B, Perek D, Brozyna A, Wakulinska A, Olczak-Kowalczyk D, Gladkowska-Dura M, et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen breakage syndrome (NBS). Pediatr Blood Cancer. 2009;52:186–90.
Slack J, Albert MH, Balashov D, Belohradsky BH, Bertaina A, Bleesing J, et al. Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. J Allergy Clin Immunol. 2018;141:322–8.e10.
Suarez F, Mahlaoui N, Canioni D, Andriamanga C, d’Enghien CD, Brousse N, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French National Registry of primary immune deficiencies. J Clin Oncol. 2015;33:202–8.
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11:159.
Achatz MI, Porter CC, Brugières L, Druker H, Frebourg T, Foulkes WD, et al. Cancer screening recommendations and clinical management of inherited gastrointestinal cancer syndromes in childhood. Clin Cancer Res. 2017;23:e107–e14.
Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet. 2016;59:133–42.
Cavaciuti E, Laugé A, Janin N, Ossian K, Hall J, Stoppa-Lyonnet D, et al. Cancer risk according to type and location of ATM mutation in ataxia-telangiectasia families. Genes Chromosomes Cancer. 2005;42:1–9.
Gładkowska-Dura M, Dzierżanowska-Fangrat K, Dura W, van Krieken J, Chrzanowska K, van Dongen J, et al. Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. J Pathol. 2008;216:337–44.
Habib R, Kim R, Neitzel H, Demuth I, Chrzanowska K, Seemanova E, et al. Telomere attrition and dysfunction: a potential trigger of the progeroid phenotype in nijmegen breakage syndrome. Aging. 2020;12:12342–75.
Li X, Leteurtre F, Rocha V, Guardiola P, Berger R, Daniel M-T, et al. Abnormal telomere metabolism in Fanconi’s anaemia correlates with genomic instability and the probability of developing severe aplastic anaemia. Br J Haematol. 2003;120:836–45.
Jones CH, Pepper C, Baird DM. Telomere dysfunction and its role in haematological cancer. Br J Haematol. 2012;156:573–87.
Mellgren K, Attarbaschi A, Abla O, Alexander S, Bomken S, Bubanska E, et al. Non-anaplastic peripheral T cell lymphoma in children and adolescents—an international review of 143 cases. Ann Hematol. 2016;95:1295–305.
Ratnaparkhe M, Hlevnjak M, Kolb T, Jauch A, Maass KK, Devens F, et al. Genomic profiling of acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia. 2017;31:2048–56.
Albert MH, Gennery AR, Greil J, Cale CM, Kalwak K, Kondratenko I, et al. Successful SCT for Nijmegen breakage syndrome. Bone Marrow Transplant. 2009;45:622–6.
Fok WC, Shukla S, Vessoni AT, Brenner KA, Parker R, Sturgeon CM, et al. Posttranscriptional modulation of TERC by PAPD5 inhibition rescues hematopoietic development in dyskeratosis congenita. Blood. 2019;133:1308–12.
Cunniff C, Bassetti JA, Ellis NA. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8:4–23.
Morton LM, Onel K, Curtis RE, Hungate EA, Armstrong GT. The rising incidence of second cancers: patterns of occurrence and identification of risk factors for children and adults. Am Soc Clin Oncol Educ Book. 2014;e57–67.
Dierickx D, Habermann TM. Post-transplantation lymphoproliferative disorders in adults. N Engl J Med. 2018;378:549–62.
Bierings M, Bonfim C, Peffault De Latour R, Aljurf M, Mehta PA, Knol C, et al. Transplant results in adults with Fanconi anaemia. Br J Haematol. 2018;180:100–9.
The NBN founder mutation-Evidence for a country specific difference in age at cancer manifestation