Identification of Germline Mutations in Melanoma Patients with Early Onset, Double Primary Tumors, or Family Cancer History by NGS Analysis of 217 Genes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV16-30954A
Ministerstvo Zdravotnictví Ceské Republiky
NV18-03-00024
Ministerstvo Zdravotnictví Ceské Republiky
NV19-03-00279
Ministerstvo Zdravotnictví Ceské Republiky
SVV 260516
Grantová Agentura, Univerzita Karlova
PROGRES Q28/LF1
Grantová Agentura, Univerzita Karlova
Strategie AV21, Qualitas
Akademie Věd České Republiky
LM2018132
Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/18_046/0015515
Operational Programme Research, Development and Education
PubMed
33050356
PubMed Central
PMC7601281
DOI
10.3390/biomedicines8100404
PII: biomedicines8100404
Knihovny.cz E-zdroje
- Klíčová slova
- NGS, familial melanoma, germline mutations, hereditary cancer predisposition, melanoma, panel sequencing,
- Publikační typ
- časopisecké články MeSH
Cutaneous melanoma is the deadliest skin malignity with a rising prevalence worldwide. Patients carrying germline mutations in melanoma-susceptibility genes face an increased risk of melanoma and other cancers. To assess the spectrum of germline variants, we analyzed 264 Czech melanoma patients indicated for testing due to early melanoma (at <25 years) or the presence of multiple primary melanoma/melanoma and other cancer in their personal and/or family history. All patients were analyzed by panel next-generation sequencing targeting 217 genes in four groups: high-to-moderate melanoma risk genes, low melanoma risk genes, cancer syndrome genes, and other genes with an uncertain melanoma risk. Population frequencies were assessed in 1479 population-matched controls. Selected POT1 and CHEK2 variants were characterized by functional assays. Mutations in clinically relevant genes were significantly more frequent in melanoma patients than in controls (31/264; 11.7% vs. 58/1479; 3.9%; p = 2.0 × 10-6). A total of 9 patients (3.4%) carried mutations in high-to-moderate melanoma risk genes (CDKN2A, POT1, ACD) and 22 (8.3%) patients in other cancer syndrome genes (NBN, BRCA1/2, CHEK2, ATM, WRN, RB1). Mutations in high-to-moderate melanoma risk genes (OR = 52.2; 95%CI 6.6-413.1; p = 3.2 × 10-7) and in other cancer syndrome genes (OR = 2.3; 95%CI 1.4-3.8; p = 0.003) were significantly associated with melanoma risk. We found an increased potential to carry these mutations (OR = 2.9; 95%CI 1.2-6.8) in patients with double primary melanoma, melanoma and other primary cancer, but not in patients with early age at onset. The analysis revealed affected genes in Czech melanoma patients and identified individuals who may benefit from genetic testing and future surveillance management of mutation carriers.
BIOCEV 1st Faculty of Medicine Charles University 252 50 Vestec Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University 128 00 Prague Czech Republic
Zobrazit více v PubMed
Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D., Piñeros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 2018;144:1941–1953. doi: 10.1002/ijc.31937. PubMed DOI
Bray F., Me J.F., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Narayanan D.L., Saladi R.N., Fox J.L. Review: Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010;49:978–986. doi: 10.1111/j.1365-4632.2010.04474.x. PubMed DOI
Shain A.H., Bastian B.C. From melanocytes to melanomas. Nat. Rev. Cancer. 2016;16:345–358. doi: 10.1038/nrc.2016.37. PubMed DOI
Mucci L.A., Hjelmborg J.B., Harris J.R., Czene K., Havelick D.J., Scheike T., Graff R.E., Holst K., Möller S., Unger R.H., et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016;315:68–76. doi: 10.1001/jama.2015.17703. PubMed DOI PMC
Hawkes J.E., Truong A., Meyer L.J. Genetic predisposition to melanoma. Semin. Oncol. 2016;43:591–597. doi: 10.1053/j.seminoncol.2016.08.003. PubMed DOI
Maggi L.B., Winkeler C.L., Miceli A.P., Apicelli A.J., Brady S.N., Kuchenreuther M.J., Weber J.D. ARF tumor suppression in the nucleolus. Biochim. Biophys. Acta. 2014;1842:831–839. doi: 10.1016/j.bbadis.2014.01.016. PubMed DOI
Gruis N.A., Van Der Velden P.A., Sandkuijl L.A., Prins D.E., Weaver-Feldhaus J., Kamb A., Bergman W., Frants R.R. Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat. Genet. 1995;10:351–353. doi: 10.1038/ng0795-351. PubMed DOI
Hill V.K., Gartner J.J., Samuels Y., Goldstein A.M. The Genetics of Melanoma: Recent Advances. Annu. Rev. Genom. Hum. Genet. 2013;14:257–279. doi: 10.1146/annurev-genom-091212-153429. PubMed DOI
Sargen M.R., Pfeiffer R., Yang X.R., Tucker M.A., Goldstein A.M. Variation in Cutaneous Patterns of Melanomagenesis According to Germline CDKN2A/CDK4 Status in Melanoma-Prone Families. J. Investig. Dermatol. 2020;140:174–181.E3. doi: 10.1016/j.jid.2019.06.138. PubMed DOI PMC
Betti M., Aspesi A., Biasi A., Casalone E., Ferrante D., Ogliara P., Gironi L.C., Giorgione R., Farinelli P., Grosso F., et al. CDKN2A and BAP1 germline mutations predispose to melanoma and mesothelioma. Cancer Lett. 2016;378:120–130. doi: 10.1016/j.canlet.2016.05.011. PubMed DOI
Zuo L., Weger J., Yang Q., Goldstein A.M., Tucker M.A., Walker G.J., Hayward N., Dracopoli N.C. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet. 1996;12:97–99. doi: 10.1038/ng0196-97. PubMed DOI
Carbone M., Yang H., Pass H.I., Krausz T., Testa J.R., Gaudino G. BAP1 and Cancer. Nat. Rev. Cancer. 2013;13:153–159. doi: 10.1038/nrc3459. PubMed DOI PMC
Goldstein A.M., Xiao Y., Sampson J., Rotunno M., Bennett H., Wen Y., Jones K., Vogt A., Burdette L., Luo W., et al. Rare germline variants in known melanoma susceptibility genes in familial melanoma. Hum. Mol. Genet. 2017;26:4886–4895. doi: 10.1093/hmg/ddx368. PubMed DOI PMC
Harland M., Petljak M., Robles-Espinoza C.D., Ding Z., Gruis N.A., Van Doorn R., Pooley K.A., Dunning A.M., Aoude L.G., Wadt K.A.W., et al. Germline TERT promoter mutations are rare in familial melanoma. Fam. Cancer. 2015;15:139–144. doi: 10.1007/s10689-015-9841-9. PubMed DOI PMC
Leachman S.A., Lucero O.M., Sampson J.E., Cassidy P., Bruno W., Queirolo P., Ghiorzo P. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev. 2017;36:77–90. doi: 10.1007/s10555-017-9661-5. PubMed DOI PMC
Chatzinasiou F., Lill C.M., Kypreou K., Stefanaki I., Nicolaou V., Spyrou G., Evangelou E., Roehr J.T., Kodela E., Katsambas A., et al. Comprehensive Field Synopsis and Systematic Meta-analyses of Genetic Association Studies in Cutaneous Melanoma. J. Natl. Cancer Inst. 2011;103:1227–1235. doi: 10.1093/jnci/djr219. PubMed DOI PMC
Law M.H., GenoMEL consortium, Bishop D.T., Lee J.E., Brossard M., Martin N.G., Moses E.K., Song F., Barrett J.H., Kumar R., et al. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nat. Genet. 2015;47:987–995. doi: 10.1038/ng.3373. PubMed DOI PMC
Roberts M., Asgari M., Toland A. Genome-wide association studies and polygenic risk scores for skin cancer: Clinically useful yet? Br. J. Dermatol. 2019;181:1146–1155. doi: 10.1111/bjd.17917. PubMed DOI PMC
Dušek L., Mužík J., Malúšková D., Májek O., Pavlík T., Koptíková J., Melichar B., Buchler T., Fínek J., Cibula D., et al. Cancer incidence and mortality in the Czech Republic. Klin. Onkol. 2014;27:406–423. doi: 10.14735/amko2014406. PubMed DOI
Krejci D., Zapletalova M., Svobodova I., Pehalova L., Muzik J., Klimes D., Snajdrova L., Bajciova V., Mudry P., Kodytkova D., et al. Epidemiological Trends for Childhood and Adolescent Cancers in the Period 1994–2016 in the Czech Republic. Klin. Onkol. 2019;32:10. doi: 10.14735/amko2019426. PubMed DOI
Soura E., Eliades P.J., Shannon K., Stratigos A.J., Tsao H. Hereditary melanoma: Update on syndromes and management. J. Am. Acad. Dermatol. 2016;74:395–407. doi: 10.1016/j.jaad.2015.08.038. PubMed DOI PMC
Soura E., Eliades P.J., Shannon K.M., Stratigos A.J., Tsao H. Hereditary melanoma: Update on syndromes and management: Emerging melanoma cancer complexes and genetic counseling. J. Am. Acad. Dermatol. 2016;74:411–420. doi: 10.1016/j.jaad.2015.08.037. PubMed DOI PMC
Read J., Wadt K., Hayward N.K. Melanoma genetics. J. Med Genet. 2015;53:1–14. doi: 10.1136/jmedgenet-2015-103150. PubMed DOI
Yu W., Clyne M., Khoury M.J., Gwinn M. Phenopedia and Genopedia: Disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics. 2009;26:145–146. doi: 10.1093/bioinformatics/btp618. PubMed DOI PMC
Lhota F., Zemankova P., Kleiblova P., Soukupova J., Vocka M., Stranecky V., Janatova M., Hartmannová H., Hodaňová K., Kmoch S., et al. Hereditary truncating mutations of DNA repair and other genes in BRCA1/BRCA2/PALB2 -negatively tested breast cancer patients. Clin. Genet. 2016;90:324–333. doi: 10.1111/cge.12748. PubMed DOI
Soukupova J., Zemankova P., Lhotova K., Janatova M., Borecka M., Stolarova L., Lhota F., Foretova L., Machackova E., Stranecky V., et al. Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS ONE. 2018;13:e0195761. doi: 10.1371/journal.pone.0195761. PubMed DOI PMC
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Walker L.C., Lattimore V.L., Kvist A., Kleiblova P., Zemankova P., De Jong L., Wiggins G.A.R., Hakkaart C., Cree S.L., Behar R., et al. Comprehensive Assessment of BARD1 Messenger Ribonucleic Acid Splicing with Implications for Variant Classification. Front. Genet. 2019;10:10. doi: 10.3389/fgene.2019.01139. PubMed DOI PMC
Kleiblova P., Stolarova L., Krizova K., Lhota F., Hojny J., Zemankova P., Havranek O., Vocka M., Cerna M., Lhotova K., et al. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int. J. Cancer. 2019;145:1782–1797. doi: 10.1002/ijc.32385. PubMed DOI
Zhou J., Chan J., Lambelé M., Yusufzai T., Stumpff J., Opresko P.L., Thali M., Wallace S.S. NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis. Cell Rep. 2017;20:2044–2056. doi: 10.1016/j.celrep.2017.08.020. PubMed DOI PMC
Loayza D., De Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nat. Cell Biol. 2003;423:1013–1018. doi: 10.1038/nature01688. PubMed DOI
Calvete O., Lázaro C., Domínguez F., Bougeard G., Kunze K., Braeuninger A., Teule A., Lasa A., Cajal T.R.Y., Llort G., et al. The wide spectrum of POT1 gene variants correlates with multiple cancer types. Eur. J. Hum. Genet. 2017;25:1278–1281. doi: 10.1038/ejhg.2017.134. PubMed DOI PMC
Lei M., Podell E.R., Cech T.R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 2004;11:1223–1229. doi: 10.1038/nsmb867. PubMed DOI
Aoude L.G., Wadt K., Pritchard A.L., Hayward N.K. Genetics of familial melanoma: 20 years after CDKN2A. Pigment. Cell Melanoma Res. 2015;28:148–160. doi: 10.1111/pcmr.12333. PubMed DOI
Goldstein A.M., Chan M., Harland M., Hayward N.K., Demenais F., Bishop D.T., Azizi E., Bergman W., Bianchi-Scarrà G., Bruno W., et al. Features associated with germline CDKN2A mutations: A GenoMEL study of melanoma-prone families from three continents. J. Med Genet. 2006;44:99–106. doi: 10.1136/jmg.2006.043802. PubMed DOI PMC
Kibe T., Zimmermann M., De Lange T. TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Mol. Cell. 2016;61:236–246. doi: 10.1016/j.molcel.2015.12.016. PubMed DOI PMC
Kendellen M.F., Barrientos K.S., Counter C.M. POT1 Association with TRF2 Regulates Telomere Length. Mol. Cell. Biol. 2009;29:5611–5619. doi: 10.1128/MCB.00286-09. PubMed DOI PMC
Calvete O., Martínez P., García-Pavía P., Benitez-Buelga C., Paumard B., Fernandez V., Domínguez F., Salas C., Romero-Laorden N., García-Donás J., et al. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li–Fraumeni-like families. Nat. Commun. 2015;6:8383. doi: 10.1038/ncomms9383. PubMed DOI PMC
Richard M.A., Lupo P.J., Morton L.M., Yasui Y.A., Sapkota Y.A., Arnold M.A., Aubert G., Neglia J.P., Turcotte L.M., Leisenring W.M., et al. Genetic variation in POT1 and risk of thyroid subsequent malignant neoplasm: A report from the Childhood Cancer Survivor Study. PLoS ONE. 2020;15:e0228887. doi: 10.1371/journal.pone.0228887. PubMed DOI PMC
Srivastava A., Miao B., Skopelitou D., Kumar V., Kumar A., Paramasivam N., Bonora E., Hemminki K., Försti A., Bandapalli O.R. A Germline Mutation in the POT1 Gene Is a Candidate for Familial Non-Medullary Thyroid Cancer. Cancers. 2020;12:1441. doi: 10.3390/cancers12061441. PubMed DOI PMC
Wilson T.L.-S., Hattangady N., Lerario A.M., Williams C., Koeppe E., Quinonez S., Osborne J., Else T., Cha K.B. A new POT1 germline mutation—Expanding the spectrum of POT1-associated cancers. Fam. Cancer. 2017;53:1–566. doi: 10.1007/s10689-017-9984-y. PubMed DOI
He H., Li W., Comiskey J.D.F., Liyanarachchi S., Nieminen T.T., Wang Y., DeLap M.K.E., Brock P., De La Chapelle A. A Truncating Germline Mutation of TINF2 in Individuals with Thyroid Cancer or Melanoma Results in Longer Telomeres. Thyroid. 2020;30:204–213. doi: 10.1089/thy.2019.0156. PubMed DOI PMC
Aoude L.G., Pritchard A.L., Robles-Espinoza C.D., Wadt K., Harland M., Choi J., Gartside M., Quesada V., A Johansson P., Palmer J.M., et al. Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma. J. Natl. Cancer Inst. 2015;107:dju408. doi: 10.1093/jnci/dju408. PubMed DOI PMC
Pastorino L., Andreotti V., Dalmasso B., Vanni I., Ciccarese G., Mandalà M., Spadola G., Pizzichetta M.A., Ponti G., Tibiletti M.G., et al. Insights into Genetic Susceptibility to Melanoma by Gene Panel Testing: Potential Pathogenic Variants in ACD, ATM, BAP1, and POT1. Cancers. 2020;12:1007. doi: 10.3390/cancers12041007. PubMed DOI PMC
Macháčková E., Házová J., Hrabincová E.S., Vašíčková P., Navrátilová M., Svoboda M., Foretová L. Retrospective NGS Study in High-risk Hereditary Cancer Patients at Masaryk Memorial Cancer Institute. Klin. Onkol. 2016;29(Suppl. S1):S35–S45. doi: 10.14735/amko2016s35. PubMed DOI
Foretová L., Navrátilová M., Svoboda M., Házová J., Vašíčková P., Sťahlová E.H., Fabian P., Schneiderová M., Macháčková E., Hrabincová E.S. BAP1 Syndrome—Predisposition to Malignant Mesothelioma, Skin and Uveal Melanoma, Renal and Other Cancers. Klin. Onkol. 2019;32:118–122. doi: 10.14735/amko2019S118. PubMed DOI
Fiévet A., Bellanger D., Zahed L., Burglen L., Derrien A., D’Enghien C.D., Lespinasse J., Parfait B., Pedespan J., Rieunier G., et al. DNA repair functional analyses of NBN hypomorphic variants associated with NBN-related infertility. Hum. Mutat. 2020;41:608–618. doi: 10.1002/humu.23955. PubMed DOI
Lhotova K., Stolarova L., Zemankova P., Vočka M., Janatova M., Borecka M., Cerna M., Jelinkova S., Kral J., Volkova Z., et al. Multigene Panel Germline Testing of 1333 Czech Patients with Ovarian Cancer. Cancers. 2020;12:956. doi: 10.3390/cancers12040956. PubMed DOI PMC
Dębniak T., Górski B., Cybulski C., Jakubowska A., Kurzawski G., Lener M., Mierzejewski M., Masojć B., Mędrek K., Kładny J., et al. Germline 657del5 mutation in the NBS1 gene in patients with malignant melanoma of the skin. Melanoma Res. 2003;13:365–370. doi: 10.1097/00008390-200308000-00005. PubMed DOI
Steffen J., Varon R., Mosor M., Maneva G., Maurer M., Stumm M., Nowakowska D., Rubach M., Kosakowska E., Ruka W., et al. Increased cancer risk of heterozygotes withNBS1 germline mutations in poland. Int. J. Cancer. 2004;111:67–71. doi: 10.1002/ijc.20239. PubMed DOI
Meyer P., Stapelmann H., Frank B., Varon R., Burwinkel B., Schmitt C., Boettger M.B., Klaes R., Sperling K., Hemminki K., et al. Molecular genetic analysis of NBS1 in German melanoma patients. Melanoma Res. 2007;17:109–116. doi: 10.1097/CMR.0b013e3280dec638. PubMed DOI
Gass J.M., Jackson J., Macklin S., Blackburn P., Hines S., Atwal P.S. A case of contralateral breast cancer and skin cancer associated with NBN heterozygous pathogenic variant c.698_701delAACA. Fam. Cancer. 2017;2013:551–553. doi: 10.1007/s10689-017-9982-0. PubMed DOI
Adams D.J., Bishop D.T., Robles-Espinoza C.D. Melanoma predisposition—A limited role for germline BRCA1 and BRCA2 variants. Pigment. Cell Melanoma Res. 2019;33:6–7. doi: 10.1111/pcmr.12833. PubMed DOI PMC
Bui A.-T.N., Leboeuf N.R., Nambudiri V.E. Skin cancer risk in CHEK2 mutation carriers. J. Eur. Acad. Dermatol. Venereol. 2020 doi: 10.1111/jdv.16729. PubMed DOI
Germline multigene panel testing of patients with endometrial cancer