DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU22-08-00186
Czech Health Research Council
IGA_2022_003
Palacky University
PubMed
37240218
PubMed Central
PMC10219140
DOI
10.3390/ijms24108868
PII: ijms24108868
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, HIPEC, biomarkers, ovarian cancer,
- MeSH
- DNA-glykosylasy * genetika MeSH
- hypertermická intraperitoneální peroperační chemoterapie MeSH
- indukovaná hypertermie * metody MeSH
- kombinovaná terapie MeSH
- lidé MeSH
- míra přežití MeSH
- nádory vaječníků * farmakoterapie genetika MeSH
- oprava DNA genetika MeSH
- přežití po terapii bez příznaků nemoci MeSH
- protokoly antitumorózní kombinované chemoterapie terapeutické užití MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-glykosylasy * MeSH
- NEIL1 protein, human MeSH Prohlížeč
DNA repair pathways are essential for maintaining genome stability, and understanding the regulation of these mechanisms may help in the design of new strategies for treatments, the prevention of platinum-based chemoresistance, and the prolongation of overall patient survival not only with respect to ovarian cancer. The role of hyperthermic intraperitoneal chemotherapy (HIPEC) together with cytoreductive surgery (CRS) and adjuvant systemic chemotherapy is receiving more interest in ovarian cancer (OC) treatment because of the typical peritoneal spread of the disease. The aim of our study was to compare the expression level of 84 genes involved in the DNA repair pathway in tumors and the paired peritoneal metastasis tissue of patients treated with CRS/platinum-based HIPEC with respect to overall patient survival, presence of peritoneal carcinomatosis, treatment response, and alterations in the BRCA1 and BRCA2 genes. Tumors and metastatic tissue from 28 ovarian cancer patients collected during cytoreductive surgery before HIPEC with cisplatin were used for RNA isolation and subsequent cDNA synthesis. Quantitative real-time PCR followed. The most interesting findings of our study are undoubtedly the gene interactions among the genes CCNH, XPA, SLK, RAD51C, XPA, NEIL1, and ATR for primary tumor tissue and ATM, ATR, BRCA2, CDK7, MSH2, MUTYH, POLB, and XRCC4 for metastases. Another interesting finding is the correlation between gene expression and overall survival (OS), where a low expression correlates with a worse OS.
Biomedical Center Faculty of Medicine in Pilsen Charles University 323 00 Pilsen Czech Republic
Department of Toxicogenomics National Institute of Public Health 100 00 Prague Czech Republic
Zobrazit více v PubMed
Global Cancer Observatory. [(accessed on 25 October 2022)]. Available online: https://gco.iarc.fr/
Burges A., Schmalfeldt B. Ovarian Cancer Diagnosis and Treatment. Dtsch. Arztebl. Int. 2011;108:635–641. doi: 10.3238/arztebl.2011.0635. PubMed DOI PMC
Momenimovahed Z., Tiznobaik A., Taheri S., Salehiniya H. Ovarian Cancer in the World: Epidemiology and Risk Factors. Int. J. Womens Health. 2019;11:287. doi: 10.2147/IJWH.S197604. PubMed DOI PMC
Desai J.P., Moustarah F. StatPearls [Internet] StatPearls Publishing; Tampa, FL, USA: 2022. Peritoneal Metastasis. PubMed
Ozols R.F. Treatment Goals in Ovarian Cancer. Int. J. Gynecol. Cancer. 2005;15:3–11. doi: 10.1136/ijgc-00009577-200505001-00002. PubMed DOI
Mohelníková-Duchoňová B., Lemstrová R., Klos D., Hanuliak J., Stašek M., Neoral Č., Melichar B. Significance of Systemic Chemotherapy and Hyperthermic Intraperitoneal Chemotherapy in Primary and Secondary Peritoneal Surface Malignancies. Onkologie. 2017;11:289–292. doi: 10.36290/xon.2017.053. DOI
Lemstrová R., Souček P., Melichar B., Mohelnikova-Duchonova B. Role of Solute Carrier Transporters in Pancreatic Cancer: A Review. Pharmacogenomics. 2014;15:1133–1145. doi: 10.2217/pgs.14.80. PubMed DOI
Siddik Z.H. Cisplatin: Mode of Cytotoxic Action and Molecular Basis of Resistance. Oncogene. 2003;22:7265–7279. doi: 10.1038/sj.onc.1206933. PubMed DOI
Van Driel W.J., Koole S.N., Sikorska K., Schagen van Leeuwen J.H., Schreuder H.W.R., Hermans R.H.M., de Hingh I.H.J.T., van der Velden J., Arts H.J., Massuger L.F.A.G., et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N. Engl. J. Med. 2018;378:230–240. doi: 10.1056/NEJMoa1708618. PubMed DOI
Moynahan M.E., Pierce A.J., Jasin M. BRCA2 Is Required for Homology-Directed Repair of Chromosomal Breaks. Mol. Cell. 2001;7:263–272. doi: 10.1016/S1097-2765(01)00174-5. PubMed DOI
Krawczyk P.M., Eppink B., Essers J., Stap J., Rodermond H., Odijk H., Zelensky A., van Bree C., Stalpers L.J., Buist M.R., et al. Mild Hyperthermia Inhibits Homologous Recombination, Induces BRCA2 Degradation, and Sensitizes Cancer Cells to Poly (ADP-Ribose) Polymerase-1 Inhibition. Proc. Natl. Acad. Sci. USA. 2011;108:9851–9856. doi: 10.1073/pnas.1101053108. PubMed DOI PMC
Jasin M., Rothstein R. Repair of Strand Breaks by Homologous Recombination. Cold Spring Harb. Perspect. Biol. 2013;5:a012740. doi: 10.1101/cshperspect.a012740. PubMed DOI PMC
Van Den Tempel N., Laffeber C., Odijk H., Van Cappellen W.A., Van Rhoon G.C., Franckena M., Kanaar R. The Effect of Thermal Dose on Hyperthermia-Mediated Inhibition of DNA Repair through Homologous Recombination. Oncotarget. 2017;8:44593. doi: 10.18632/oncotarget.17861. PubMed DOI PMC
Lampe B., Kroll N., Piso P., Forner D.M., Mallmann P. Prognostic Significance of Sugarbaker’s Peritoneal Cancer Index for the Operability of Ovarian Carcinoma. Int. J. Gynecol. Cancer. 2015;25:135–144. doi: 10.1097/IGC.0000000000000327. PubMed DOI
Feng W., Dean D.C., Hornicek F.J., Wang J., Jia Y., Duan Z., Shi H. ATR and P-ATR Are Emerging Prognostic Biomarkers and DNA Damage Response Targets in Ovarian Cancer. Ther. Adv. Med. Oncol. 2020;12:1758835920982853. doi: 10.1177/1758835920982853. PubMed DOI PMC
Kim J., Cho Y.J., Ryu J.Y., Hwang I., Han H.D., Ahn H.J., Kim W.Y., Cho H., Chung J.Y., Hewitt S.M., et al. CDK7 Is a Reliable Prognostic Factor and Novel Therapeutic Target in Epithelial Ovarian Cancer. Gynecol. Oncol. 2020;156:211. doi: 10.1016/j.ygyno.2019.11.004. PubMed DOI PMC
Guo Y., Jia Y., Wang S., Liu N., Gao D., Zhang L., Lin Z., Wang S., Kong F., Peng C., et al. Downregulation of MUTYH Contributes to Cisplatin resistance of Esophageal Squamous Cell Carcinoma Cells by Promoting Twist mediated EMT. Oncol. Rep. 2019;42:2716–2727. doi: 10.3892/or.2019.7347. PubMed DOI
Ganzinelli M., Mariani P., Cattaneo D., Fossati R., Fruscio R., Corso S., Ricci F., Broggini M., Damia G. Expression of DNA Repair Genes in Ovarian Cancer Samples: Biological and Clinical Considerations. Eur. J. Cancer. 2011;47:1086–1094. doi: 10.1016/j.ejca.2010.11.029. PubMed DOI
Chatterjee N., Walker G.C. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ. Mol. Mutagen. 2017;58:235–263. doi: 10.1002/em.22087. PubMed DOI PMC
Tsibulak I., Wieser V., Degasper C., Shivalingaiah G., Wenzel S., Sprung S., Lax S.F., Marth C., Fiegl H., Zeimet A.G. BRCA1 and BRCA2 MRNA-Expression Prove to Be of Clinical Impact in ovarian Cancer. Br. J. Cancer. 2018;119:683. doi: 10.1038/s41416-018-0217-4. PubMed DOI PMC
Olbromski P.J., Pawlik P., Bogacz A., Sajdak S. Identification of New Molecular Biomarkers in Ovarian Cancer Using the Gene Expression Profile. J. Clin. Med. 2022;11:3888. doi: 10.3390/jcm11133888. PubMed DOI PMC
Osorio A., Milne R.L., Kuchenbaecker K., Vaclová T., Pita G., Alonso R., Peterlongo P., Blanco I., de la Hoya M., Duran M., et al. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet. 2014;10:e1004256. doi: 10.1371/journal.pgen.1004256. PubMed DOI PMC
Gallagher D.J., Konner J.A., Bell-McGuinn K.M., Bhatia J., Sabbatini P., Aghajanian C.A., Offit K., Barakat R.R., Spriggs D.R., Kauff N.D. Survival in Epithelial Ovarian Cancer: A Multivariate Analysis Incorporating BRCA Mutation Status and Platinum Sensitivity. Ann. Oncol. 2011;22:1127–1132. doi: 10.1093/annonc/mdq577. PubMed DOI PMC
Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., Thornton A., Norquist B.M., Casadei S., Nord A.S., et al. Germline and Somatic Mutations in Homologous Recombination Genes Predict Platinum Response and Survival in Ovarian, Fallopian Tube, and Peritoneal Carcinomas. Clin. Cancer. Res. 2014;20:764–775. doi: 10.1158/1078-0432.CCR-13-2287. PubMed DOI PMC
Norquist B.M., Brady M.F., Harrell M.I., Walsh T., Lee M.K., Gulsuner S., Bernards S.S., Casadei S., Burger R.A., Tewari K.S., et al. Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. Clin. Cancer. Res. 2018;24:777–783. doi: 10.1158/1078-0432.CCR-17-1327. PubMed DOI PMC
Liontos M., Zografos E., Zoumpourlis P., Andrikopoulou A., Svarna A., Fiste O., Kunadis E., Papatheodoridi A.M., Kaparelou M., Koutsoukos K., et al. BRCA1/2 Mutation Types Do Not Affect Prognosis in Ovarian Cancer Patients. Curr. Oncol. 2021;28:4446–4456. doi: 10.3390/curroncol28060377. PubMed DOI PMC
Labidi-Galy S.I., Olivier T., Rodrigues M., Ferraioli D., Derbel O., Bodmer A., Petignat P., Rak B., Chopin N., Tredan O., et al. Location of Mutation in BRCA2 Gene and Survival in Patients with Ovarian Cancer. Clin. Cancer. Res. 2018;24:326–333. doi: 10.1158/1078-0432.CCR-17-2136. PubMed DOI
Alsop K., Fereday S., Meldrum C., DeFazio A., Emmanuel C., George J., Dobrovic A., Birrer M.J., Webb P.M., Stewart C., et al. BRCA Mutation Frequency and Patterns of Treatment Response in BRCA Mutation–Positive Women with Ovarian Cancer: A Report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012;30:2654. doi: 10.1200/JCO.2011.39.8545. PubMed DOI PMC
ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data (BETA) [(accessed on 25 October 2022)]. Available online: https://biit.cs.ut.ee/clustvis/
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Jensen L.J., et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic. Acids Res. 2021;49:605–612. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC
Soukupova J., Zemankova P., Lhotova K., Janatova M., Borecka M., Stolarova L., Lhota F., Foretova L., Machackova E., Stranecky V., et al. Validation of CZECANCA (CZEch CAncer PaNel for Clinical Application) for Targeted NGS-Based Analysis of Hereditary Cancer Syndromes. PLoS ONE. 2018;13:e0195761. doi: 10.1371/journal.pone.0195761. PubMed DOI PMC