DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC

. 2023 May 17 ; 24 (10) : . [epub] 20230517

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37240218

Grantová podpora
NU22-08-00186 Czech Health Research Council
IGA_2022_003 Palacky University

DNA repair pathways are essential for maintaining genome stability, and understanding the regulation of these mechanisms may help in the design of new strategies for treatments, the prevention of platinum-based chemoresistance, and the prolongation of overall patient survival not only with respect to ovarian cancer. The role of hyperthermic intraperitoneal chemotherapy (HIPEC) together with cytoreductive surgery (CRS) and adjuvant systemic chemotherapy is receiving more interest in ovarian cancer (OC) treatment because of the typical peritoneal spread of the disease. The aim of our study was to compare the expression level of 84 genes involved in the DNA repair pathway in tumors and the paired peritoneal metastasis tissue of patients treated with CRS/platinum-based HIPEC with respect to overall patient survival, presence of peritoneal carcinomatosis, treatment response, and alterations in the BRCA1 and BRCA2 genes. Tumors and metastatic tissue from 28 ovarian cancer patients collected during cytoreductive surgery before HIPEC with cisplatin were used for RNA isolation and subsequent cDNA synthesis. Quantitative real-time PCR followed. The most interesting findings of our study are undoubtedly the gene interactions among the genes CCNH, XPA, SLK, RAD51C, XPA, NEIL1, and ATR for primary tumor tissue and ATM, ATR, BRCA2, CDK7, MSH2, MUTYH, POLB, and XRCC4 for metastases. Another interesting finding is the correlation between gene expression and overall survival (OS), where a low expression correlates with a worse OS.

Zobrazit více v PubMed

Global Cancer Observatory. [(accessed on 25 October 2022)]. Available online: https://gco.iarc.fr/

Burges A., Schmalfeldt B. Ovarian Cancer Diagnosis and Treatment. Dtsch. Arztebl. Int. 2011;108:635–641. doi: 10.3238/arztebl.2011.0635. PubMed DOI PMC

Momenimovahed Z., Tiznobaik A., Taheri S., Salehiniya H. Ovarian Cancer in the World: Epidemiology and Risk Factors. Int. J. Womens Health. 2019;11:287. doi: 10.2147/IJWH.S197604. PubMed DOI PMC

Desai J.P., Moustarah F. StatPearls [Internet] StatPearls Publishing; Tampa, FL, USA: 2022. Peritoneal Metastasis. PubMed

Ozols R.F. Treatment Goals in Ovarian Cancer. Int. J. Gynecol. Cancer. 2005;15:3–11. doi: 10.1136/ijgc-00009577-200505001-00002. PubMed DOI

Mohelníková-Duchoňová B., Lemstrová R., Klos D., Hanuliak J., Stašek M., Neoral Č., Melichar B. Significance of Systemic Chemotherapy and Hyperthermic Intraperitoneal Chemotherapy in Primary and Secondary Peritoneal Surface Malignancies. Onkologie. 2017;11:289–292. doi: 10.36290/xon.2017.053. DOI

Lemstrová R., Souček P., Melichar B., Mohelnikova-Duchonova B. Role of Solute Carrier Transporters in Pancreatic Cancer: A Review. Pharmacogenomics. 2014;15:1133–1145. doi: 10.2217/pgs.14.80. PubMed DOI

Siddik Z.H. Cisplatin: Mode of Cytotoxic Action and Molecular Basis of Resistance. Oncogene. 2003;22:7265–7279. doi: 10.1038/sj.onc.1206933. PubMed DOI

Van Driel W.J., Koole S.N., Sikorska K., Schagen van Leeuwen J.H., Schreuder H.W.R., Hermans R.H.M., de Hingh I.H.J.T., van der Velden J., Arts H.J., Massuger L.F.A.G., et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N. Engl. J. Med. 2018;378:230–240. doi: 10.1056/NEJMoa1708618. PubMed DOI

Moynahan M.E., Pierce A.J., Jasin M. BRCA2 Is Required for Homology-Directed Repair of Chromosomal Breaks. Mol. Cell. 2001;7:263–272. doi: 10.1016/S1097-2765(01)00174-5. PubMed DOI

Krawczyk P.M., Eppink B., Essers J., Stap J., Rodermond H., Odijk H., Zelensky A., van Bree C., Stalpers L.J., Buist M.R., et al. Mild Hyperthermia Inhibits Homologous Recombination, Induces BRCA2 Degradation, and Sensitizes Cancer Cells to Poly (ADP-Ribose) Polymerase-1 Inhibition. Proc. Natl. Acad. Sci. USA. 2011;108:9851–9856. doi: 10.1073/pnas.1101053108. PubMed DOI PMC

Jasin M., Rothstein R. Repair of Strand Breaks by Homologous Recombination. Cold Spring Harb. Perspect. Biol. 2013;5:a012740. doi: 10.1101/cshperspect.a012740. PubMed DOI PMC

Van Den Tempel N., Laffeber C., Odijk H., Van Cappellen W.A., Van Rhoon G.C., Franckena M., Kanaar R. The Effect of Thermal Dose on Hyperthermia-Mediated Inhibition of DNA Repair through Homologous Recombination. Oncotarget. 2017;8:44593. doi: 10.18632/oncotarget.17861. PubMed DOI PMC

Lampe B., Kroll N., Piso P., Forner D.M., Mallmann P. Prognostic Significance of Sugarbaker’s Peritoneal Cancer Index for the Operability of Ovarian Carcinoma. Int. J. Gynecol. Cancer. 2015;25:135–144. doi: 10.1097/IGC.0000000000000327. PubMed DOI

Feng W., Dean D.C., Hornicek F.J., Wang J., Jia Y., Duan Z., Shi H. ATR and P-ATR Are Emerging Prognostic Biomarkers and DNA Damage Response Targets in Ovarian Cancer. Ther. Adv. Med. Oncol. 2020;12:1758835920982853. doi: 10.1177/1758835920982853. PubMed DOI PMC

Kim J., Cho Y.J., Ryu J.Y., Hwang I., Han H.D., Ahn H.J., Kim W.Y., Cho H., Chung J.Y., Hewitt S.M., et al. CDK7 Is a Reliable Prognostic Factor and Novel Therapeutic Target in Epithelial Ovarian Cancer. Gynecol. Oncol. 2020;156:211. doi: 10.1016/j.ygyno.2019.11.004. PubMed DOI PMC

Guo Y., Jia Y., Wang S., Liu N., Gao D., Zhang L., Lin Z., Wang S., Kong F., Peng C., et al. Downregulation of MUTYH Contributes to Cisplatin resistance of Esophageal Squamous Cell Carcinoma Cells by Promoting Twist mediated EMT. Oncol. Rep. 2019;42:2716–2727. doi: 10.3892/or.2019.7347. PubMed DOI

Ganzinelli M., Mariani P., Cattaneo D., Fossati R., Fruscio R., Corso S., Ricci F., Broggini M., Damia G. Expression of DNA Repair Genes in Ovarian Cancer Samples: Biological and Clinical Considerations. Eur. J. Cancer. 2011;47:1086–1094. doi: 10.1016/j.ejca.2010.11.029. PubMed DOI

Chatterjee N., Walker G.C. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ. Mol. Mutagen. 2017;58:235–263. doi: 10.1002/em.22087. PubMed DOI PMC

Tsibulak I., Wieser V., Degasper C., Shivalingaiah G., Wenzel S., Sprung S., Lax S.F., Marth C., Fiegl H., Zeimet A.G. BRCA1 and BRCA2 MRNA-Expression Prove to Be of Clinical Impact in ovarian Cancer. Br. J. Cancer. 2018;119:683. doi: 10.1038/s41416-018-0217-4. PubMed DOI PMC

Olbromski P.J., Pawlik P., Bogacz A., Sajdak S. Identification of New Molecular Biomarkers in Ovarian Cancer Using the Gene Expression Profile. J. Clin. Med. 2022;11:3888. doi: 10.3390/jcm11133888. PubMed DOI PMC

Osorio A., Milne R.L., Kuchenbaecker K., Vaclová T., Pita G., Alonso R., Peterlongo P., Blanco I., de la Hoya M., Duran M., et al. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet. 2014;10:e1004256. doi: 10.1371/journal.pgen.1004256. PubMed DOI PMC

Gallagher D.J., Konner J.A., Bell-McGuinn K.M., Bhatia J., Sabbatini P., Aghajanian C.A., Offit K., Barakat R.R., Spriggs D.R., Kauff N.D. Survival in Epithelial Ovarian Cancer: A Multivariate Analysis Incorporating BRCA Mutation Status and Platinum Sensitivity. Ann. Oncol. 2011;22:1127–1132. doi: 10.1093/annonc/mdq577. PubMed DOI PMC

Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., Thornton A., Norquist B.M., Casadei S., Nord A.S., et al. Germline and Somatic Mutations in Homologous Recombination Genes Predict Platinum Response and Survival in Ovarian, Fallopian Tube, and Peritoneal Carcinomas. Clin. Cancer. Res. 2014;20:764–775. doi: 10.1158/1078-0432.CCR-13-2287. PubMed DOI PMC

Norquist B.M., Brady M.F., Harrell M.I., Walsh T., Lee M.K., Gulsuner S., Bernards S.S., Casadei S., Burger R.A., Tewari K.S., et al. Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. Clin. Cancer. Res. 2018;24:777–783. doi: 10.1158/1078-0432.CCR-17-1327. PubMed DOI PMC

Liontos M., Zografos E., Zoumpourlis P., Andrikopoulou A., Svarna A., Fiste O., Kunadis E., Papatheodoridi A.M., Kaparelou M., Koutsoukos K., et al. BRCA1/2 Mutation Types Do Not Affect Prognosis in Ovarian Cancer Patients. Curr. Oncol. 2021;28:4446–4456. doi: 10.3390/curroncol28060377. PubMed DOI PMC

Labidi-Galy S.I., Olivier T., Rodrigues M., Ferraioli D., Derbel O., Bodmer A., Petignat P., Rak B., Chopin N., Tredan O., et al. Location of Mutation in BRCA2 Gene and Survival in Patients with Ovarian Cancer. Clin. Cancer. Res. 2018;24:326–333. doi: 10.1158/1078-0432.CCR-17-2136. PubMed DOI

Alsop K., Fereday S., Meldrum C., DeFazio A., Emmanuel C., George J., Dobrovic A., Birrer M.J., Webb P.M., Stewart C., et al. BRCA Mutation Frequency and Patterns of Treatment Response in BRCA Mutation–Positive Women with Ovarian Cancer: A Report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012;30:2654. doi: 10.1200/JCO.2011.39.8545. PubMed DOI PMC

ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data (BETA) [(accessed on 25 October 2022)]. Available online: https://biit.cs.ut.ee/clustvis/

Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Jensen L.J., et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic. Acids Res. 2021;49:605–612. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC

Soukupova J., Zemankova P., Lhotova K., Janatova M., Borecka M., Stolarova L., Lhota F., Foretova L., Machackova E., Stranecky V., et al. Validation of CZECANCA (CZEch CAncer PaNel for Clinical Application) for Targeted NGS-Based Analysis of Hereditary Cancer Syndromes. PLoS ONE. 2018;13:e0195761. doi: 10.1371/journal.pone.0195761. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace