Diurnal photosynthetic performance of two oak species from two provenances in a Mediterranean and a central European common garden
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650105
PubMed Central
PMC11558599
DOI
10.32615/ps.2022.023
PII: PS60326
Knihovny.cz E-zdroje
- Klíčová slova
- Quercus frainetto, Quercus pubescens, assisted migration, chlorophyll fluorescence, diurnal variation, gas exchange,
- Publikační typ
- časopisecké články MeSH
Oaks may contribute to the stabilization of European forests under climate change. We utilized two common gardens established in contrasting growth regimes, in Greece (Olympiada) and Germany (Schwanheim), to compare the diurnal photosynthetic performance of a Greek and an Italian provenance of two Mediterranean oaks (Quercus pubescens and Q. frainetto) during the 2019 growing season. Although the higher radiation in the southern common garden led to a strong midday depression of chlorophyll a fluorescence parameters (maximum quantum efficiency of PSII, performance index on absorption basis), comparable light-saturated net photosynthetic rates were achieved in both study areas. Moreover, both species and provenances exhibited analogous responses. Q. pubescens had enhanced chlorophyll a fluorescence traits but similar photosynthetic rates compared to Q. frainetto, whereas the provenances did not differ. These findings indicate the high photosynthetic efficiency of both oaks under the current climate in Central Europe and their suitability for assisted migration schemes.
Zobrazit více v PubMed
Adams W.W. III, Demmig-Adams B.: Chlorophyll fluorescence as a tool to monitor plant response to the environment. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp 583-604. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_22 DOI
Babst F., Poulter B., Trouet V. et al.: Site- and species-specific responses of forest growth to climate across the European continent. – Global Ecol. Biogeogr. 22: 706-717, 2013. https://onlinelibrary.wiley.com/doi/10.1111/geb.12023 DOI
Bantis F., Früchtenicht E., Graap J. et al.: The JIP-test as a tool for forestry in times of climate change. – Photosynthetica 58: 409-421, 2020. https://ps.ueb.cas.cz/artkey/phs-202002-0023_special-issue-in-honour-of-prof-reto-j-strasser-8211-the-jip-test-as-a-tool-for-forestry-in-times-of-clima.php
Bantis F., Graap J., Früchtenicht E. et al.: Field performances of Mediterranean oaks in replicate common gardens for future reforestation under climate change in central and southern Europe: first results from a four-year study. – Forests 12: 678, 2021. https://www.mdpi.com/1999-4907/12/6/678
Bantis F., Radoglou K., Brüggemann W.: Differential ecophysiological responses to seasonal drought of three co-existing oak species in northern Greece. – Plant Biosyst. 153: 378-384, 2019. https://www.tandfonline.com/doi/full/10.1080/11263504.2018.1492990 DOI
Baquedano F.J., Castillo F.J.: Drought tolerance in the Mediterranean species Quercus coccifera, Quercus ilex, Pinus halepensis, and Juniperus phoenicea. – Photosynthetica 45: 229-238, 2007. https://ps.ueb.cas.cz/artkey/phs-200702-0011_drought-tolerance-in-the-mediterranean-species-quercus-coccifera-quercus-ilex-pinus-halepensis-and-juniperus.php
Boshier D., Broadhurst L., Cornelius J. et al.: Is local best? Examining the evidence for local adaptation in trees and its scale. – Environ. Evid. 4: 20, 2015. https://environmentalevidencejournal.biomedcentral.com/track/pdf/10.1186/s13750-015-0046-3.pdf DOI
Both H., Brüggemann W.: Photosynthesis studies on European evergreen and deciduous oaks grown under Central European climate conditions. I: a case study of leaf development and seasonal variation of photosynthetic capacity in Quercus robur (L.), Q. ilex (L.) and their semideciduous hybrid, Q. × turneri (Willd.). – Trees-Struct. Funct. 23: 1081-1090, 2009. https://link.springer.com/article/10.1007/s00468-009-0352-x DOI
Bréda N., Huc R., Granier A., Dreyer D.: Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. – Ann. For. Sci. 63: 625-644, 2006. https://www.afs-journal.org/articles/forest/abs/2006/06/f6063/f6063.html
Brüggemann W., Bergmann M., Nierbauer K.U. et al.: Photosynthesis studies on European evergreen and deciduous oaks grown under Central European climate conditions: II. Photoinhibitory and light-independent violaxanthin deepoxidation and downregulation of photosystem II in evergreen, winter-acclimated European Quercus taxa. – Trees-Struct. Funct. 23: 1091-1100, 2009. https://link.springer.com/article/10.1007/s00468-009-0351-y DOI
Bussotti F.: Quercus pubescens Willd. – In: Roloff A., Weisgerber H., Lang U.M. et al. (ed.): Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie, 12. [Encyclopedia of Woody Species: Handbook and Atlas of Dendrology, 12.] Pp. 1-10. Wiley-Vch Verlag, Weinheim: 1998. [In German].
Bussotti F., Pollastrini M., Holland V., Brüggemann W.: Functional traits and adaptive capacity of European forests to climate change. – Environ. Exp. Bot. 111: 91-113, 2015. https://www.sciencedirect.com/science/article/abs/pii/S0098847214002585?via%3Dihub
Caldeira M.C., Ibáñez I., Nogueira C. et al.: Direct and indirect effects of tree canopy facilitation in the recruitment of Mediterranean oaks. – J. Appl. Ecol. 51: 349-358, 2014. https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2664.12189 DOI
Demmig-Adams B., Adams W.W. III, Winter K. et al.: Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal. – Planta 177: 377-387, 1989. https://link.springer.com/article/10.1007/BF00403596 PubMed DOI
Dorado-Liñán I., Piovesan G., Martínez-Sancho E. et al.: Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. – Glob. Change Biol. 25: 1296-1314, 2019. https://onlinelibrary.wiley.com/doi/10.1111/gcb.14544 PubMed DOI
Epron D., Dreyer E.: Long-term effects of drought on photosynthesis of adult oak trees [Quercus petraea (Matt.) Liebl. and Quercus robur L.] in a natural stand. – New Phytol. 125: 381-389, 1993. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1993.tb03890.x PubMed DOI
Epron D., Dreyer E., Bréda N.: Photosynthesis of oak trees [Quercus petraea (Matt.) Liebl.] during drought under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. – Plant Cell Environ. 15: 809-820, 1992. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1992.tb02148.x DOI
Euro+Med: Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity, 2006. http://ww2.bgbm.org/EuroPlusMed/ Accessed: 10 November 2021.
Flores J.L.F., Jurado E.: Are nurse–protégé interactions more common among plants from arid environments? – J. Veg. Sci. 14: 911-916, 2003. https://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.2003.tb02225.x DOI
Fotelli M.N., Lyrou F.G., Avtzis D.N. et al.: Effective defense of Aleppo pine against the giant scale Marchalina hellenica through ecophysiological and metabolic changes. – Front. Plant Sci. 11: 581693, 2020. https://www.frontiersin.org/articles/10.3389/fpls.2020.581693/full PubMed DOI PMC
Fotelli M.N., Radoglou K.M., Constantinidou E.-I.A.: Water stress responses of seedlings of four Mediterranean oak species. – Tree Physiol. 20: 1065-1075, 2000. https://academic.oup.com/treephys/article/20/16/1065/1671505 PubMed
Früchtenicht E., Neumann L., Klein N. et al.: Responses of Quercus robur and two potential climate change winners – Quercus pubescens and Quercus ilex – to two years of mid-growing season drought in a competition study: I – Tree water status. – Environ. Exp. Bot. 152: 107-117, 2018. https://www.sciencedirect.com/science/article/abs/pii/S0098847218300091?via%3Dihub
García-Ruiz J.M., López-Moreno J.I., Vicente-Serrano S.M. et al.: Mediterranean water resources in a global change scenario. – Earth-Sci. Rev. 105: 121-139, 2011. https://www.sciencedirect.com/science/article/abs/pii/S0012825211000134?via%3Dihub
Hanewinkel M., Cullmann D.A., Schelhaas M.-J. et al.: Climate change may cause severe loss in the economic value of European forest land. – Nat. Clim. Change 3: 203-207, 2013. https://www.nature.com/articles/nclimate1687
Hickler T., Vohland K., Feehan J. et al.: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. – Glob. Ecol. Biogeogr. 21: 50-63, 2012. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1466-8238.2010.00613.x DOI
Hoegh-Guldberg O., Jacob D., Taylor M. et al.: Impacts of 1.5°C global warming on natural and human systems. – In: Masson-Delmotte V., Zhai P., Pörtner H.O. et al. (ed.): Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Pp 175-311. IPCC, Geneva: 2018. https://www.ipcc.ch/sr15/chapter/chapter-3/
Holland V., Koller S., Brüggemann W.: Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during end of growing season senescence using OJIP fluorescence transient analysis. – Plant Biol. 16: 801-808, 2014. https://onlinelibrary.wiley.com/doi/10.1111/plb.12105 PubMed DOI
Holland V., Koller S., Lukas S., Brüggemann W.: Drought- and frost-induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescens. – Trees-Struct. Funct. 30: 215-226, 2016. https://link.springer.com/article/10.1007/s00468-015-1290-4 DOI
IPCC: Summary for Policymakers. – In: Masson Delmotte V., Zhai P., Pirani A. et al. (ed.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 41. Cambridge University Press; 2021. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf
Jedmowski C., Ashoub A., Beckhaus T. et al.: Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. – Int. J. Proteomics 2014: 395905, 2014. https://www.hindawi.com/journals/ijpro/2014/395905/ PubMed PMC
Jedmowski C., Ashoub A., Momtaz O., Brüggemann W.: Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley (Hordeum spontaneum). – J. Bot. 2015: 120868, 2015. https://www.hindawi.com/journals/jb/2015/120868/
Jiang C.-D., Shi L., Gao H.-Y. et al.: Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. – Photosynthetica 44: 454-463, 2006. https://ps.ueb.cas.cz/artkey/phs-200603-0020_development-of-photosystems-2-and-1-during-leaf-growth-in-grapevine-seedlings-probed-by-chlorophyll-a-fluoresce.php
Koller S., Holland V., Brüggemann W.: Seasonal monitoring of PSII functionality and relative chlorophyll content on a field site in two consecutive years: A case study of different oak species. – Photosynthetica 58: 379-390, 2020. https://ps.ueb.cas.cz/artkey/phs-202002-0020_special-issue-in-honour-of-prof-reto-j-strasser-8211-seasonal-monitoring-of-psii-functionality-and-relativ.php
Krause G.H., Virgo A., Winter K.: High susceptibility to photoinhibition of young leaves of tropical forest trees. – Planta 197: 583-591, 1995. https://link.springer.com/article/10.1007/BF00191564 DOI
Loarie S.R., Duffy P.B., Hamilton H. et al.: The velocity of climate change. – Nature 462: 1052-1055, 2009. https://www.nature.com/articles/nature08649 PubMed
Long S.P., Humphries S., Falkowski P.G.: Photoinhibition of photosynthesis in nature. – Annu. Rev. Plant Biol. 45: 633-662, 1994. https://www.annualreviews.org/doi/10.1146/annurev.pp.45.060194.003221 DOI
Martín-Alcón S., Coll L., Ameztegui A.: Diversifying sub-Mediterranean pinewoods with oak species in a context of assisted migration: responses to local climate and light environment. – Appl. Veg. Sci. 19: 254-266, 2016. https://onlinelibrary.wiley.com/doi/10.1111/avsc.12216 DOI
Matzner S.L., Rice K.J., Richards J.H.: Patterns of stomatal conductance among blue oak (Quercus douglasii) size classes and populations: implications for seedling establishment. – Tree Physiol. 23: 777-784, 2003. https://academic.oup.com/treephys/article/23/11/777/1635601 PubMed
Morecroft M.D., Roberts J.M.: Photosynthesis and stomatal conductance of mature canopy Oak (Quercus robur) and Sycamore (Acer pseudoplatanus) trees throughout the growing season. – Funct. Ecol. 13: 332-342, 1999. https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2435.1999.00327.x DOI
Morecroft M.D., Stokes V.J., Morison J.I.L.: Seasonal changes in the photosynthetic capacity of canopy oak (Quercus robur) leaves: the impact of slow development on annual carbon uptake. – Int. J. Biometeorol. 4: 221-226, 2003. https://link.springer.com/article/10.1007/s00484-003-0173-3 PubMed DOI
Ogaya R., Peñuelas R.: Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holm Oak Forest. – Flora 198: 132-141, 2003. https://www.sciencedirect.com/science/article/abs/pii/S0367253004700602?via%3Dihub
Padhi B., Chauhan G., Kandoi D. et al.: A comparison of chlorophyll fluorescence transient measurements, using Handy PEA and FluorPen fluorometers. – Photosynthetica 59: 399-408, 2021. https://ps.ueb.cas.cz/artkey/phs-202103-0004_a-comparison-of-chlorophyll-fluorescence-transient-measurements-using-handy-pea-and-fluorpen-fluorometers.php
Pasta S., de Rigo D., Caudullo G.: Quercus pubescens in Europe: distribution, habitat, usage and threats. – In: San-Miguel-Ayanz J., de Rigo D., Caudullo G. et al. (ed.): European Atlas of Forest Tree Species. Pp. 156-157. Publication Office of the European Union, Luxembourg: 2016. https://www.researchgate.net/publication/299471349_Quercus_pubescens_in_Europe_distribution_habitat_usage_and_threats
Peña-Rojas K., Aranda X., Fleck I.: Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. – Tree Physiol. 247: 813-822, 2004. https://academic.oup.com/treephys/article/24/7/813/1663736 PubMed
Pollastrini M., Holland V., Brüggemann W. et al.: Taxonomic and ecological relevance of the chlorophyll a fluorescence signature of tree species in mixed European forests. – New Phytol. 212: 51-65, 2016. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.14026 PubMed DOI
Pollastrini M., Salvatori E., Fusaro L. et al.: Selection of tree species for forests under climate change: is PSI functioning a better predictor for net photosynthesis and growth than PSII? – Tree Physiol. 40: 1561-1571, 2020. https://academic.oup.com/treephys/article/40/11/1561/5864702 PubMed
Puletti N., Mattioli W., Bussotti F., Pollastrini M.: Monitoring the effects of extreme drought events on forest health by Sentinel-2 imagery. – J. Appl. Remote Sens. 13: 020501, 2019. https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-13/issue-02/020501/Monitoring-the-effects-of-extreme-drought-events-on-forest-health/10.1117/1.JRS.13.020501.full?SSO=1 DOI
Schroeder H., Nosenko T., Ghirardo A. et al.: Oaks as beacons of hope for threatened mixed forests in Central Europe. – Front. For. Glob. Change 4: 670797, 2021. https://www.frontiersin.org/articles/10.3389/ffgc.2021.670797/full DOI
Seidl R., Thom D., Kautz M. et al.: Forest disturbances under climate change. – Nat. Clim. Change 7: 394-402, 2017. https://www.nature.com/articles/nclimate3303/ PubMed PMC
Siam A.M.J., Radoglou K.M., Noitsakis B., Smiris P.: Physiological and growth responses of three Mediterranean oak species to different water availability regimes. – J. Arid Environ. 72: 583-592, 2008. https://www.sciencedirect.com/science/article/pii/S0140196307003035?via%3Dihub
Siam A.M.J., Radoglou K.M., Noitsakis B., Smiris P.: Differences in ecophysiological responses to mid-growing season drought between seedlings of three deciduous oak species. – Forest Ecol. Manag. 258: 35-42, 2009. https://www.sciencedirect.com/science/article/pii/S0378112709002448?via%3Dihub
Spinoni J., Vogt J.V., Naumann G. et al.: Will drought events become more frequent and severe in Europe? – Int. J. Climatol. 38: 1718-1736, 2018. https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5291 DOI
Stojnić S., Orlović S., Miljković D. et al.: Provenance plasticity of European beech leaf traits under differing environmental conditions at two Serbian common garden sites. – Eur. J. For. Res. 134: 1109-1125, 2015. https://link.springer.com/article/10.1007/s10342-015-0914-y DOI
Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. – In: Mohanty P., Yunus M., Pathre U. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. CRC Press, Boca Raton, Florida: 2000. https://ppsystems.com/wp-content/uploads/the-fluorescence-transient.pdf
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_12 DOI
Strid A., Tan K.: Flora Hellenica. Pp. 547. Koeltz Scientific Books, Konigstein: 1997.
Süßel F., Brüggemann W.: Properties of secondary xylem of mature oaks in southwest Germany formed after extreme drought stress in summer 2018. – Trees Forests People 5: 100097, 2021. https://www.sciencedirect.com/science/article/pii/S2666719321000364?via%3Dihub
Tezara W., Marín O., Rengifo E. et al.: Photosynthesis and photoinhibition in two xerophytic shrubs during drought. – Photosynthetica 43: 37-45, 2005. https://ps.ueb.cas.cz/artkey/phs-200501-0005_photosynthesis-and-photoinhibition-in-two-xerophytic-shrubs-during-drought.php
Valladares F., Dobarro I., Sánchez-Gómez D., Pearcy R.W.: Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. – J. Exp. Bot. 56: 483-494, 2005. https://academic.oup.com/jxb/article/56/411/483/429875 PubMed
Valladares F., Niinemets Ü.: Shade tolerance, a key plant feature of complex nature and consequences. – Annu. Rev. Ecol. Evol. Syst. 39: 237-257, 2008. https://www.annualreviews.org/doi/10.1146/annurev.ecolsys.39.110707.173506 DOI
Vayreda J., Martinez-Vilalta J., Gracia M. et al.: Anthropogenic-driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. – Glob. Change Biol. 22: 3984-3995, 2016. https://onlinelibrary.wiley.com/doi/10.1111/gcb.13394 PubMed DOI
Vitt P., Havens K., Kramer A.T. et al.: Assisted migration of plants: changes in latitudes, changes in attitudes. – Biol. Conserv. 143: 18-27, 2010. https://www.sciencedirect.com/science/article/pii/S0006320709003917?via%3Dihub
Wenden B., Mariadassou M., Chmielewski F.M., Vitasse Y.: Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. – Glob. Change Biol. 26: 1808-1819, 2019. https://onlinelibrary.wiley.com/doi/10.1111/gcb.14918 PubMed DOI
Werner C., Correia O., Beyschlag W.: Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. – Funct. Plant Biol. 29: 999-1011, 2002. https://www.publish.csiro.au/fp/PP01143 PubMed
Winder R., Nelson E., Beardmore T.: Ecological implications for assisted migration in Canadian forests. – For. Chron. 87: 731-744, 2011. https://pubs.cif-ifc.org/doi/10.5558/tfc2011-090 DOI
Yang J.- D., Zhao H.- L., Zhang T.-H.: Diurnal patterns of net photosynthetic rate, stomatal conductance, and chlorophyll fluorescence in leaves of field-grown mungbean (Phaseolus radiatus) and millet (Setaria italica). – New Zeal. J. Crop Hort. 32: 273-279, 2004. https://www.tandfonline.com/doi/abs/10.1080/01140671.2004.9514306 DOI
Zhang S., Gao R.: Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. – Photosynthetica 37: 559-571, 1999. https://ps.ueb.cas.cz/artkey/phs-199914-0011_diurnal-changes-of-gas-exchange-chlorophyll-fluorescence-and-stomatal-aperture-of-hybrid-poplar-clones-subjec.php
Zhang S., Li Q., Ma K., Chen L.: Temperature-dependent gas exchange and stomatal/non-stomatal limitation to CO2 assimilation of Quercus liaotungensis under midday high irradiance. – Photosynthetica 39: 383-388, 2001. https://ps.ueb.cas.cz/artkey/phs-200103-0009_temperature-dependent-gas-exchange-and-stomatal-non-stomatal-limitation-to-co2-assimilation-of-quercus-liaotung.php
Zindros A., Radoglou K., Milios E., Kitikidou K.: Tree line shift in the Olympus Mountain (Greece) and climate change. – Forests 11: 985, 2020. https://www.mdpi.com/1999-4907/11/9/985