High aspect ratio nanomaterial-induced macrophage polarization is mediated by changes in miRNA levels

. 2023 ; 14 () : 1111123. [epub] 20230127

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36776851

INTRODUCTION: Inhalation of nanomaterials may induce inflammation in the lung which if left unresolved can manifest in pulmonary fibrosis. In these processes, alveolar macrophages have an essential role and timely modulation of the macrophage phenotype is imperative in the onset and resolution of inflammatory responses. This study aimed to investigate, the immunomodulating properties of two industrially relevant high aspect ratio nanomaterials, namely nanocellulose and multiwalled carbon nanotubes (MWCNT), in an alveolar macrophage model. METHODS: MH-S alveolar macrophages were exposed at air-liquid interface to cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and two MWCNT (NM-400 and NM-401). Following exposure, changes in macrophage polarization markers and secretion of inflammatory cytokines were analyzed. Furthermore, the potential contribution of epigenetic regulation in nanomaterial-induced macrophage polarization was investigated by assessing changes in epigenetic regulatory enzymes, miRNAs, and rRNA modifications. RESULTS: Our data illustrate that the investigated nanomaterials trigger phenotypic changes in alveolar macrophages, where CNF exposure leads to enhanced M1 phenotype and MWCNT promotes M2 phenotype. Furthermore, MWCNT exposure induced more prominent epigenetic regulatory events with changes in the expression of histone modification and DNA methylation enzymes as well as in miRNA transcript levels. MWCNT-enhanced changes in the macrophage phenotype were correlated with prominent downregulation of the histone methyltransferases Kmt2a and Smyd5 and histone deacetylases Hdac4, Hdac9 and Sirt1 indicating that both histone methylation and acetylation events may be critical in the Th2 responses to MWCNT. Furthermore, MWCNT as well as CNF exposure led to altered miRNA levels, where miR-155-5p, miR-16-1-3p, miR-25-3p, and miR-27a-5p were significantly regulated by both materials. PANTHER pathway analysis of the identified miRNA targets showed that both materials affected growth factor (PDGF, EGF and FGF), Ras/MAPKs, CCKR, GnRH-R, integrin, and endothelin signaling pathways. These pathways are important in inflammation or in the activation, polarization, migration, and regulation of phagocytic capacity of macrophages. In addition, pathways involved in interleukin, WNT and TGFB signaling were highly enriched following MWCNT exposure. CONCLUSION: Together, these data support the importance of macrophage phenotypic changes in the onset and resolution of inflammation and identify epigenetic patterns in macrophages which may be critical in nanomaterial-induced inflammation and fibrosis.

Zobrazit více v PubMed

Murray PJ. Macrophage polarization. Annu Rev Physiol (2017) 79(1):541–66. doi: 10.1146/annurev-physiol-022516-034339 PubMed DOI

Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-Design. Nanomed (London) (2011) 6(1):143–56. doi: 10.2217/nnm.10.139 PubMed DOI

Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. Biopersistence and potential adverse health impacts of fibrous nanomaterials: What have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol (2009) 1(5):511–29. doi: 10.1002/wnan.41 PubMed DOI PMC

Natoli G, Pileri F, Gualdrini F, Ghisletti S. Integration of transcriptional and metabolic control in macrophage activation. EMBO Rep (2021) 22(9):e53251. doi: 10.15252/embr.202153251 PubMed DOI PMC

Kapellos TS, Iqbal AJ. Epigenetic control of macrophage polarisation and soluble mediator gene expression during inflammation. Mediators Inflammation (2016) 2016:6591703. doi: 10.1155/2016/6591703 PubMed DOI PMC

Chen S, Yang J, Wei Y, Wei X. Epigenetic regulation of macrophages: From homeostasis maintenance to host defense. Cell Mol Immunol (2020) 17(1):36–49. doi: 10.1038/s41423-019-0315-0 PubMed DOI PMC

de Groot AE, Pienta KJ. Epigenetic control of macrophage polarization: Implications for targeting tumor-associated macrophages. Oncotarget (2018) 9(29):20908–27. doi: 10.18632/oncotarget.24556 PubMed DOI PMC

Daskalaki MG, Tsatsanis C, Kampranis SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol (2018) 233(9):6495–507. doi: 10.1002/jcp.26497 PubMed DOI

Ma D, Zhou X, Wang Y, Dai L, Yuan J, Peng J, et al. . Changes in the small noncoding rnaome during M1 and M2 macrophage polarization. Front Immunol (2022) 13:799733. doi: 10.3389/fimmu.2022.799733 PubMed DOI PMC

Curtale G, Rubino M, Locati M. Micrornas as molecular switches in macrophage activation. Front Immunol (2019) 10:799. doi: 10.3389/fimmu.2019.00799 PubMed DOI PMC

Kishore A, Petrek M. Roles of macrophage polarization and macrophage-derived mirnas in pulmonary fibrosis. Front Immunol (2021) 12:678457. doi: 10.3389/fimmu.2021.678457 PubMed DOI PMC

Qin W, Spek CA, Scicluna BP, van der Poll T, Duitman J. Myeloid DNA Methyltransferase3b deficiency aggravates pulmonary fibrosis by enhancing profibrotic macrophage activation. Respir Res (2022) 23(1):162. doi: 10.1186/s12931-022-02088-5 PubMed DOI PMC

Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight (2016) 1(19):e87748. doi: 10.1172/jci.insight.87748 PubMed DOI PMC

Yang X, Wang X, Liu D, Yu L, Xue B, Shi H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol Endocrinol (2014) 28(4):565–74. doi: 10.1210/me.2013-1293 PubMed DOI PMC

Catalán J, Rydman E, Aimonen K, Hannukainen K-S, Suhonen S, Vanhala E, et al. . Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis (2017) 32(1):23–31. doi: 10.1093/mutage/gew035 PubMed DOI

Hadrup N, Knudsen KB, Berthing T, Wolff H, Bengtson S, Kofoed C, et al. . Pulmonary effects of nanofibrillated celluloses in mice suggest that carboxylation lowers the inflammatory and acute phase responses. Environ Toxicol Pharmacol (2019) 66:116–25. doi: 10.1016/j.etap.2019.01.003 PubMed DOI

Ilves M, Vilske S, Aimonen K, Lindberg HK, Pesonen S, Wedin I, et al. . Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology (2018) 12(7):729–746. doi: 10.1080/17435390.2018.1472312 PubMed DOI

Park E-J, Khaliullin TO, Shurin MR, Kisin ER, Yanamala N, Fadeel B, et al. . Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J Immunotoxicol (2018) 15(1):12–23. doi: 10.1080/1547691X.2017.1414339 PubMed DOI

Shvedova AA, Kisin ER, Yanamala N, Farcas MT, Menas AL, Williams A, et al. . Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part Fibre Toxicol (2016) 13(1):28. doi: 10.1186/s12989-016-0140-x PubMed DOI PMC

Yanamala N, Farcas MT, Hatfield MK, Kisin ER, Kagan VE, Geraci CL, et al. . In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng (2014) 2(7):1691–8. doi: 10.1021/sc500153k PubMed DOI PMC

Song LY, Wu YZ, Pei XX, Li R, Chen HT, Sun XZ. Pulmonary toxicity and rna sequencing analyses of mouse in response to exposure to cellulose nanofibrils. Inhal Toxicol (2020) 32(9-10):388–401. doi: 10.1080/08958378.2020.1831112 PubMed DOI

Catalán J, Ilves M, Järventaus H, Hannukainen K-S, Kontturi E, Vanhala E, et al. . Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. Environ Mol Mutagen (2015) 56(2):171–82. doi: 10.1002/em.21913 PubMed DOI

Lopes VR, Sanchez-Martinez C, Strømme M, Ferraz N. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: Surface chemistry aspect. Part Fibre Toxicol (2017) 14:1. doi: 10.1186/s12989-016-0182-0 PubMed DOI PMC

Menas AL, Yanamala N, Farcas MT, Russo M, Friend S, Fournier PM, et al. . Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation? Chemosphere (2017) 171:671–80. doi: 10.1016/j.chemosphere.2016.12.105 PubMed DOI PMC

Yanamala N, Kisin ER, Menas AL, Farcas MT, Khaliullin TO, Vogel UB, et al. . In vitro toxicity evaluation of lignin-(Un)Coated cellulose based nanomaterials on human A549 and thp-1 cells. Biomacromolecules (2016) 17(11):3464–73. doi: 10.1021/acs.biomac.6b00756 PubMed DOI

Bhattacharya K, Kiliç G, Costa PM, Fadeel B. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology (2017) 11(6):809–26. doi: 10.1080/17435390.2017.1363309 PubMed DOI

Samulin Erdem J, Alswady-Hoff M, Ervik TK, Skare Ø, Ellingsen DG, Zienolddiny S. Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function. Biomaterials (2019) 203:31–42. doi: 10.1016/j.biomaterials.2019.02.025 PubMed DOI

Aimonen K, Hartikainen M, Imani M, Suhonen S, Vales G, Moreno C, et al. . Effect of surface modification on the pulmonary and systemic toxicity of cellulose nanofibrils. Biomacromolecules (2022) 23(7):2752–66. doi: 10.1021/acs.biomac.2c00072 PubMed DOI PMC

Park E-J, Roh J, Kim S-N, M-s K, Han Y-A, Kim Y, et al. . A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch Toxicol (2011) 85(9):1121–31. doi: 10.1007/s00204-011-0655-8 PubMed DOI

Dong J, Ma Q. In vivo activation of a T helper 2-driven innate immune response in lung fibrosis induced by multi-walled carbon nanotubes. Arch Toxicol (2016) 90(9):2231–48. doi: 10.1007/s00204-016-1711-1 PubMed DOI PMC

Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. Pro-inflammatory and potential allergic responses resulting from b cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology (2009) 259(3):113–21. doi: 10.1016/j.tox.2009.02.009 PubMed DOI

Rydman EM, Ilves M, Koivisto AJ, Kinaret PA, Fortino V, Savinko TS, et al. . Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. Part Fibre Toxicol (2014) 11:48. doi: 10.1186/s12989-014-0048-2 PubMed DOI PMC

Labib S, Williams A, Yauk CL, Nikota JK, Wallin H, Vogel U, et al. . Nano-risk science: Application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Part Fibre Toxicol (2016) 13:15. doi: 10.1186/s12989-016-0125-9 PubMed DOI PMC

Fatkhutdinova LM, Khaliullin TO, Vasil'yeva OL, Zalyalov RR, Mustafin IG, Kisin ER, et al. . Fibrosis biomarkers in workers exposed to mwcnts. Toxicol Appl Pharmacol (2016) 299:125–31. doi: 10.1016/j.taap.2016.02.016 PubMed DOI PMC

Dong J, Ma Q. Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis. Nanotoxicology (2018) 12(2):153–68. doi: 10.1080/17435390.2018.1425501 PubMed DOI PMC

Lim CS, Porter DW, Orandle MS, Green BJ, Barnes MA, Croston TL, et al. . Resolution of pulmonary inflammation induced by carbon nanotubes and fullerenes in mice: Role of macrophage polarization. Front Immunol (2020) 11:1186. doi: 10.3389/fimmu.2020.01186 PubMed DOI PMC

Beyeler S, Steiner S, Wotzkow C, Tschanz SA, Adhanom Sengal A, Wick P, et al. . Multi-walled carbon nanotubes activate and shift polarization of pulmonary macrophages and dendritic cells in an in vivo model of chronic obstructive lung disease. Nanotoxicology (2020) 14(1):77–96. doi: 10.1080/17435390.2019.1663954 PubMed DOI

Dong J, Ma Q. Type 2 immune mechanisms in carbon nanotube-induced lung fibrosis. Front Immunol (2018) 9:1120. doi: 10.3389/fimmu.2018.01120 PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. Nih image to imagej: 25 years of image analysis. Nat Methods (2012) 9(7):671–5. doi: 10.1038/nmeth.2089 PubMed DOI PMC

Longair MH, Baker DA, Armstrong JD. Simple neurite tracer: Open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics (2011) 27(17):2453–4. doi: 10.1093/bioinformatics/btr390 PubMed DOI

Schliwa M, van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol (1981) 90(1):222–35. doi: 10.1083/jcb.90.1.222 PubMed DOI PMC

Knudsen KB, Kofoed C, Espersen R, Højgaard C, Winther JR, Willemoës M, et al. . Visualization of nanofibrillar cellulose in biological tissues using a biotinylated carbohydrate binding module of β-1,4-Glycanase. Chem Res Toxicol (2015) 28(8):1627–35. doi: 10.1021/acs.chemrestox.5b00271 PubMed DOI

Andrés-León E, Núñez-Torres R, Rojas AM. Miarma-seq: A comprehensive tool for mirna, mrna and circrna analysis. Sci Rep (2016) 6(1):25749. doi: 10.1038/srep25749 PubMed DOI PMC

Kozomara A, Birgaoanu M, Griffiths-Jones S. Mirbase: From microrna sequences to function. Nucleic Acids Res (2018) 47(D1):D155–D62. doi: 10.1093/nar/gky1141 PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for rna-seq data with Deseq2. Genome Biol (2014) 15(12):550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Blighe K, Sharmila R, Lewis M. Enhancedvolcano: Publication-ready volcano plots with enhanced colouring and labeling (2022). Available at: https://github.com/kevinblighe/EnhancedVolcano.

Chen Y, Wang X. Mirdb: An online database for prediction of functional microrna targets. Nucleic Acids Res (2019) 48(D1):D127–D31. doi: 10.1093/nar/gkz757 PubMed DOI PMC

Liu W, Wang X. Prediction of functional microrna targets by integrative modeling of microrna binding and target expression data. Genome Biol (2019) 20(1):18. doi: 10.1186/s13059-019-1629-z PubMed DOI PMC

Mi H, Thomas P. Panther pathway: An ontology-based pathway database coupled with data analysis tools. Methods Mol Biol (2009) 563:123–40. doi: 10.1007/978-1-60761-175-2_7 PubMed DOI PMC

Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K, et al. . Landscape of the complete rna chemical modifications in the human 80s ribosome. Nucleic Acids Res (2018) 46(18):9289–98. doi: 10.1093/nar/gky811 PubMed DOI PMC

Alswady-Hoff M, Erdem JS, Aleksandersen M, Anmarkrud KH, Skare Ø, Lin F-C, et al. . Multiwalled carbon nanotubes induce fibrosis and telomere length alterations. Int J Mol Sci (2022) 23(11):6005. doi: 10.3390/ijms23116005 PubMed DOI PMC

Arnoldussen YJ, Skaug V, Aleksandersen M, Ropstad E, Anmarkrud KH, Einarsdottir E, et al. . Inflammation in the pleural cavity following injection of multi-walled carbon nanotubes is dependent on their characteristics and the presence of il-1 genes. Nanotoxicology (2018) 12(6):522–38. doi: 10.1080/17435390.2018.1465139 PubMed DOI

Barbarino M, Giordano A. Assessment of the carcinogenicity of carbon nanotubes in the respiratory system. Cancers (2021) 13(6):1318. doi: 10.3390/cancers13061318 PubMed DOI PMC

Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, et al. . Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol (2014) 11(1):3. doi: 10.1186/1743-8977-11-3 PubMed DOI PMC

Aimonen K, Imani M, Hartikainen M, Suhonen S, Vanhala E, Moreno C, et al. . Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils. Part Fibre Toxicol (2022) 19(1):19. doi: 10.1186/s12989-022-00460-3 PubMed DOI PMC

Čolić M, Tomić S, Bekić M. Immunological aspects of nanocellulose. Immunol Lett (2020) 222:80–9. doi: 10.1016/j.imlet.2020.04.004 PubMed DOI

Li J, Wang X, Chang CH, Jiang J, Liu Q, Liu X, et al. . Nanocellulose length determines the differential cytotoxic effects and inflammatory responses in macrophages and hepatocytes. Small (2021) 17(38):2102545. doi: 10.1002/smll.202102545 PubMed DOI PMC

Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol (2010) 7(1):5. doi: 10.1186/1743-8977-7-5 PubMed DOI PMC

Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, et al. . Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol (2016) 13(1):53. doi: 10.1186/s12989-016-0164-2 PubMed DOI PMC

Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: Toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci (2009) 113(1):226–42. doi: 10.1093/toxsci/kfp247 PubMed DOI

Poulsen SS, Jackson P, Kling K, Knudsen KB, Skaug V, Kyjovska ZO, et al. . Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology (2016) 10(9):1263–75. doi: 10.1080/17435390.2016.1202351 PubMed DOI PMC

Saleh DM, Alexander WT, Numano T, Ahmed OHM, Gunasekaran S, Alexander DB, et al. . Comparative carcinogenicity study of a thick, straight-type and a thin, tangled-type multi-walled carbon nanotube administered by intra-tracheal instillation in the rat. Part Fibre Toxicol (2020) 17(1):48. doi: 10.1186/s12989-020-00382-y PubMed DOI PMC

Suzui M, Futakuchi M, Fukamachi K, Numano T, Abdelgied M, Takahashi S, et al. . Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci (2016) 107(7):924–35. doi: 10.1111/cas.12954 PubMed DOI PMC

Xu J, Alexander DB, Futakuchi M, Numano T, Fukamachi K, Suzui M, et al. . Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci (2014) 105(7):763–9. doi: 10.1111/cas.12437 PubMed DOI PMC

Di Ianni E, Erdem JS, Møller P, Sahlgren NM, Poulsen SS, Knudsen KB, et al. . In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of mwcnt. Part Fibre Toxicol (2021) 18(1):25. doi: 10.1186/s12989-021-00413-2 PubMed DOI PMC

Købler C, Poulsen SS, Saber AT, Jacobsen NR, Wallin H, Yauk CL, et al. . Time-dependent subcellular distribution and effects of carbon nanotubes in lungs of mice. PloS One (2015) 10(1):e0116481. doi: 10.1371/journal.pone.0116481 PubMed DOI PMC

Murphy FA, Schinwald A, Poland CA, Donaldson K. The mechanism of pleural inflammation by long carbon nanotubes: Interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol (2012) 9:8–. doi: 10.1186/1743-8977-9-8 PubMed DOI PMC

Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, et al. . Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci (2011) 108(49):E1330–E8. doi: 10.1073/pnas.1110013108 PubMed DOI PMC

Murphy F, Jacobsen NR, Di Ianni E, Johnston H, Braakhuis H, Peijnenburg W, et al. . Grouping mwcnts based on their similar potential to cause pulmonary hazard after inhalation: A case-study. Part Fibre Toxicol (2022) 19(1):50. doi: 10.1186/s12989-022-00487-6 PubMed DOI PMC

Hamilton RF, Jr., Xiang C, Li M, Ka I, Yang F, Ma D, et al. . Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhal Toxicol (2013) 25(4):199–210. doi: 10.3109/08958378.2013.775197 PubMed DOI PMC

Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM, et al. . Epigenetic regulation of the alternatively activated macrophage phenotype. Blood (2009) 114(15):3244–54. doi: 10.1182/blood-2009-04-217620 PubMed DOI PMC

Kittan NA, Allen RM, Dhaliwal A, Cavassani KA, Schaller M, Gallagher KA, et al. . Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PloS One (2013) 8(10):e78045. doi: 10.1371/journal.pone.0078045 PubMed DOI PMC

Mullican SE, Gaddis CA, Alenghat T, Nair MG, Giacomin PR, Everett LJ, et al. . Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev (2011) 25(23):2480–8. doi: 10.1101/gad.175950.111 PubMed DOI PMC

Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, et al. . The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol (2010) 11(10):936–44. doi: 10.1038/ni.1920 PubMed DOI

Kobatake K, Ikeda KI, Nakata Y, Yamasaki N, Ueda T, Kanai A, et al. . Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with P53 dysfunction. Clin Cancer Res (2020) 26(8):2065–79. doi: 10.1158/1078-0432.Ccr-19-2230 PubMed DOI

Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ, et al. . Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4k20. Mol Cell (2012) 48(1):28–38. doi: 10.1016/j.molcel.2012.07.020 PubMed DOI PMC

Xu G, Liu G, Xiong S, Liu H, Chen X, Zheng B. The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (Il-6) and tumor necrosis factor α (Tnf-α) production. J Biol Chem (2015) 290(9):5414–23. doi: 10.1074/jbc.M114.610345 PubMed DOI PMC

Yang H, Sun Y, Li Q, Jin F, Dai Y. Diverse epigenetic regulations of macrophages in atherosclerosis. Front Cardiovasc Med (2022) 9:868788. doi: 10.3389/fcvm.2022.868788 PubMed DOI PMC

Cao Q, Rong S, Repa JJ, St Clair R, Parks JS, Mishra N. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol (2014) 34(9):1871–9. doi: 10.1161/atvbaha.114.303393 PubMed DOI PMC

Liu Y, Du M, Lin HY. Histone deacetylase 9 deficiency exaggerates uterine M2 macrophage polarization. J Cell Mol Med (2021) 25(16):7690–708. doi: 10.1111/jcmm.16616 PubMed DOI PMC

Luan B, Goodarzi MO, Phillips NG, Guo X, Chen YD, Yao J, et al. . Leptin-mediated increases in catecholamine signaling reduce adipose tissue inflammation Via activation of macrophage Hdac4. Cell Metab (2014) 19(6):1058–65. doi: 10.1016/j.cmet.2014.03.024 PubMed DOI PMC

Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, et al. . Myeloid deletion of Sirt1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol (2010) 30(19):4712–21. doi: 10.1128/mcb.00657-10 PubMed DOI PMC

Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, et al. . Sirt1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab (2010) 298(3):E419–28. doi: 10.1152/ajpendo.00417.2009 PubMed DOI PMC

Pogribna M, Hammons G. Epigenetic effects of nanomaterials and nanoparticles. J Nanobiotechnol (2021) 19(1):2. doi: 10.1186/s12951-020-00740-0 PubMed DOI PMC

Zhang W, Liu S, Han D, He Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine. Acta Biomater (2020) 117:93–107. doi: 10.1016/j.actbio.2020.09.034 PubMed DOI

Brown TA, Lee JW, Holian A, Porter V, Fredriksen H, Kim M, et al. . Alterations in DNA methylation corresponding with lung inflammation and as a biomarker for disease development after mwcnt exposure. Nanotoxicology (2016) 10(4):453–61. doi: 10.3109/17435390.2015.1078852 PubMed DOI PMC

Cole E, Ray JL, Bolten S, Hamilton RF, Jr., Shaw PK, Postma B, et al. . Multiwalled carbon nanotubes of varying size lead to DNA methylation changes that correspond to lung inflammation and injury in a mouse model. Chem Res Toxicol (2019) 32(8):1545–53. doi: 10.1021/acs.chemrestox.9b00075 PubMed DOI

Scala G, Delaval MN, Mukherjee SP, Federico A, Khaliullin TO, Yanamala N, et al. . Multi-walled carbon nanotubes elicit concordant changes in DNA methylation and gene expression following long-term pulmonary exposure in mice. Carbon (2021) 178:563–72. doi: 10.1016/j.carbon.2021.03.045 PubMed DOI PMC

Ghosh M, Öner D, Poels K, Tabish AM, Vlaanderen J, Pronk A, et al. . Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace. Nanotoxicology (2017) 11(9-10):1195–210. doi: 10.1080/17435390.2017.1406169 PubMed DOI

Öner D, Moisse M, Ghosh M, Duca RC, Poels K, Luyts K, et al. . Epigenetic effects of carbon nanotubes in human monocytic cells. Mutagenesis (2017) 32(1):181–91. doi: 10.1093/mutage/gew053 PubMed DOI

Li J, Zeng X, Wang W. Mir-122-5p downregulation attenuates lipopolysaccharide-induced acute lung injury by targeting Il1rn. Exp Ther Med (2021) 22(5):1278. doi: 10.3892/etm.2021.10713 PubMed DOI PMC

Wang H, Zhang C, Zhang C, Wang Y, Zhai K, Tong Z. Microrna-122-5p regulates coagulation and inflammation through Masp1 and ho-1 genes. Infect Genet Evol (2022) 100:105268. doi: 10.1016/j.meegid.2022.105268 PubMed DOI

Zhao Z, Zhong L, Li P, He K, Qiu C, Zhao L, et al. . Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages Via exosomal mir-122-5p. Exp Cell Res (2020) 387(1):111738. doi: 10.1016/j.yexcr.2019.111738 PubMed DOI

Servais FA, Kirchmeyer M, Hamdorf M, Minoungou NWE, Rose-John S, Kreis S, et al. . Modulation of the il-6-Signaling pathway in liver cells by mirnas targeting Gp130, Jak1, and/or Stat3. Mol Ther Nucleic Acids (2019) 16:419–33. doi: 10.1016/j.omtn.2019.03.007 PubMed DOI PMC

Talari M, Kapadia B, Kain V, Seshadri S, Prajapati B, Rajput P, et al. . Microrna-16 modulates macrophage polarization leading to improved insulin sensitivity in myoblasts. Biochimie (2015) 119:16–26. doi: 10.1016/j.biochi.2015.10.004 PubMed DOI

Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME. Identifying functional micrornas in macrophages with polarized phenotypes. J Biol Chem (2012) 287(26):21816–25. doi: 10.1074/jbc.M111.327031 PubMed DOI PMC

Lu L, McCurdy S, Huang S, Zhu X, Peplowska K, Tiirikainen M, et al. . Time series mirna-mrna integrated analysis reveals critical mirnas and targets in macrophage polarization. Sci Rep (2016) 6(1):37446. doi: 10.1038/srep37446 PubMed DOI PMC

Yao F, Yu Y, Feng L, Li J, Zhang M, Lan X, et al. . Adipogenic mir-27a in adipose tissue upregulates macrophage activation Via inhibiting pparγ of insulin resistance induced by high-fat diet-associated obesity. Exp Cell Res (2017) 355(2):105–12. doi: 10.1016/j.yexcr.2017.03.060 PubMed DOI

Sui J, Fu Y, Zhang Y, Ma S, Yin L, Pu Y, et al. . Molecular mechanism for mir-350 in regulating of titanium dioxide nanoparticles in macrophage Raw264.7 cells. Chem Biol Interact (2018) 280:77–85. doi: 10.1016/j.cbi.2017.12.020 PubMed DOI

Zhang Y, Zhang M, Li X, Tang Z, Wang X, Zhong M, et al. . Silencing microrna-155 attenuates cardiac injury and dysfunction in viral myocarditis Via promotion of M2 phenotype polarization of macrophages. Sci Rep (2016) 6(1):22613. doi: 10.1038/srep22613 PubMed DOI PMC

O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. Microrna-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U.S.A. (2007) 104(5):1604–9. doi: 10.1073/pnas.0610731104 PubMed DOI PMC

Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (Il-13) pathway in human macrophages is modulated by microrna-155 Via direct targeting of interleukin 13 receptor Alpha1 (Il13ralpha1). J Biol Chem (2011) 286(3):1786–94. doi: 10.1074/jbc.M110.169367 PubMed DOI PMC

He M, Xu Z, Ding T, Kuang DM, Zheng L. Microrna-155 regulates inflammatory cytokine production in tumor-associated macrophages Via targeting C/Ebpbeta. Cell Mol Immunol (2009) 6(5):343–52. doi: 10.1038/cmi.2009.45 PubMed DOI PMC

Ballesteros S, Vales G, Velázquez A, Pastor S, Alaraby M, Marcos R, et al. . Micrornas as a suitable biomarker to detect the effects of long-term exposures to nanomaterials. Stud Tio2np Mwcnt. Nanomater (2021) 11(12):3458. doi: 10.3390/nano11123458 PubMed DOI PMC

Hu M, Palić D. Role of micrornas in regulation of DNA damage in monocytes exposed to polystyrene and Tio2 nanoparticles. Toxicol Rep (2020) 7:743–51. doi: 10.1016/j.toxrep.2020.05.007 PubMed DOI PMC

Monteleone NJ, Lutz CS. Mir-708 negatively regulates Tnfα/Il-1β signaling by suppressing nf-κb and arachidonic acid pathways. Mediators Inflammation (2021) 2021:5595520. doi: 10.1155/2021/5595520 PubMed DOI PMC

Tserel L, Runnel T, Kisand K, Pihlap M, Bakhoff L, Kolde R, et al. . Microrna expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal mir-511 as putative positive regulator of toll-like receptor 4. J Biol Chem (2011) 286(30):26487–95. doi: 10.1074/jbc.M110.213561 PubMed DOI PMC

Awuah D, Alobaid M, Latif A, Salazar F, Emes RD, Ghaemmaghami AM. The cross-talk between mir-511-3p and c-type lectin receptors on dendritic cells affects dendritic cell function. J Immunol (2019) 203(1):148–157. doi: 10.4049/jimmunol.1801108 PubMed DOI

Awuah D, Ruisinger A, Alobaid M, Mbadugha C, Ghaemmaghami AM. Microrna-511-3p mediated modulation of the peroxisome proliferator-activated receptor gamma (Pparγ) controls lps-induced inflammatory responses in human monocyte derived dcs. bioRxiv (2020), 369967. doi: 10.1101/2020.11.05.369967. 2020.11.05. DOI

Zhou Y, Do DC, Ishmael FT, Squadrito ML, Tang HM, Tang HL, et al. . Mannose receptor modulates macrophage polarization and allergic inflammation through mir-511-3p. J Allergy Clin Immunol (2018) 141(1):350–64.e8. doi: 10.1016/j.jaci.2017.04.049 PubMed DOI PMC

Cobos Jiménez V, Bradley EJ, Willemsen AM, van Kampen AH, Baas F, Kootstra NA. Next-generation sequencing of micrornas uncovers expression signatures in polarized macrophages. Physiol Genomics (2014) 46(3):91–103. doi: 10.1152/physiolgenomics.00140.2013 PubMed DOI

Han X, Liu H, Zhang Z, Yang W, Wu C, Liu X, et al. . Epitranscriptomic 5-methylcytosine profile in Pm2.5-induced mouse pulmonary fibrosis. Genom Proteom Bioinform (2020) 18(1):41–51. doi: 10.1016/j.gpb.2019.11.005 PubMed DOI PMC

Kupsco A, Gonzalez G, Baker BH, Knox JM, Zheng Y, Wang S, et al. . Associations of smoking and air pollution with peripheral blood rna N6-methyladenosine in the Beijing truck driver air pollution study. Environ Int (2020) 144:106021. doi: 10.1016/j.envint.2020.106021 PubMed DOI PMC

Du J, Liao W, Liu W, Deb DK, He L, Hsu PJ, et al. . N(6)-adenosine methylation of Socs1 mrna is required to sustain the negative feedback control of macrophage activation. Dev Cell (2020) 55(6):737–53.e7. doi: 10.1016/j.devcel.2020.10.023 PubMed DOI PMC

Tong J, Wang X, Liu Y, Ren X, Wang A, Chen Z, et al. . Pooled crispr screening identifies M6a as a positive regulator of macrophage activation. Sci Adv (2021) 7(18):eabd4742. doi: 10.1126/sciadv.abd4742 PubMed DOI PMC

Yu R, Li Q, Feng Z, Cai L, Xu Q. M6a reader Ythdf2 regulates lps-induced inflammatory response. Int J Mol Sci (2019) 20(6):1323. doi: 10.3390/ijms20061323 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...