First Evidence of the Presence of the Causative Agent of Caseous Lymphadenitis-Corynebacterium pseudotuberculosis in Dairy Products Produced from the Milk of Small Ruminants

. 2022 Nov 26 ; 11 (12) : . [epub] 20221126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36558758

Grantová podpora
QK1910082 and RO0518 Ministry of Agriculture

This study focused on the detection and quantification of selected bacteria and on the presence of enterotoxin genes in milk and dairy products from sheep and goat farms in the Czech Republic using quantitative real-time PCR (qPCR) and multiplex PCR (PCR). The presence of Corynebacterium pseudotuberculosis (CP), Mycobacterium avium subsp. paratuberculosis (MAP), Listeria monocytogenes, Staphylococcus aureus, S. aureus enterotoxin genes and methicillin-resistant Staphylococcus aureus (MRSA) was determined in 18 milk samples, 28 fresh cheeses, 20 ripened cheeses and 14 yoghurts. The serological status of the herds in relation to CP and MAP was taken into account. The most frequently detected bacterium was S. aureus (48.8%), and subsequent PCR revealed 11 MRSA positive samples. The S. aureus enterotoxin genes seg, sei and sec were detected in two goat cheeses. Cheese samples showed a statistically higher risk of SA and MRSA occurrence. CP (8.8%) and MAP (13.8%) were detected by qPCR on two different seropositive farms. Cultivation of qPCR positive CP samples on agar plates supplemented with potassium tellurite showed the presence of viable bacterium. The results obtained confirmed the necessity of monitoring the infectious status of dairy animals and rapid diagnosis of bacterial pathogens in milk and dairy products.

Zobrazit více v PubMed

Ganter M. Zoonotic risks from small ruminants. Vet. Microbiol. 2015;181:53–65. doi: 10.1016/j.vetmic.2015.07.015. PubMed DOI

EFSA Scientific Opinion on the public health risks related to the consumption of raw drinking milk. EFSA J. 2015;13:95. doi: 10.2903/j.efsa.2015.3940. DOI

Hermans K., Devriese L.A., Haesebrouck F. Staphylococcus. In: Gyles C.L.P., Prescott J.F., Songer J.G., Thoen C.O., editors. Pathogenesis of Bacterial Infections in Animals. 4th ed. Volume 4. Blackwell Publishing; Iowa, IA, USA: 2010. pp. 75–85.

Huijps K., Lam T.J., Hogeveen H. Costs of mastitis: Facts and perception. J. Dairy Res. 2008;75:113–120. doi: 10.1017/S0022029907002932. PubMed DOI

Le Loir Y., Baron F., Gautier M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2003;2:63–76. PubMed

Ono H.K., Omoe K., Imanishi K., Iwakabe Y., Hu D.L., Kato H., Saito N., Nakane A., Uchiyama T., Shinagawa K. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect. Immun. 2008;76:4999–5005. doi: 10.1128/IAI.00045-08. PubMed DOI PMC

Lowy F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003;111:1265–1273. doi: 10.1172/JCI18535. PubMed DOI PMC

Pantosti A. Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Front. Microbiol. 2012;3:127. doi: 10.3389/fmicb.2012.00127. PubMed DOI PMC

Hahne J., Kloster T., Rathmann S., Weber M., Lipski A. Isolation and characterization of Corynebacterium spp. from bulk tank raw cow’s milk of different dairy farms in Germany. PLoS ONE. 2018;13:e0194365. doi: 10.1371/journal.pone.0194365. PubMed DOI PMC

Oliveira A., Oliveira L.C., Aburjaile F., Benevides L., Tiwari S., Jamal S.B., Silva A., Figueiredo H.C.P., Ghosh P., Portela R.W., et al. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Front. Microbiol. 2017;8:1937. doi: 10.3389/fmicb.2017.01937. PubMed DOI PMC

Baird G.J., Fontaine M.C. Corynebacterium pseudotuberculosis and its role in ovine Caseous lymphadenitis. J Comp Pathol. 2007;137:179–210. doi: 10.1016/j.jcpa.2007.07.002. PubMed DOI

Radostits O.M., Gay C.C., Blood D.C., Hinchcliff K.W. Veterinary Medicine. 9th ed. W.B. Saunders; London, UK: 2000. Caseous lymphadenitis in sheep and goats; pp. 727–730.

Schreuder B.E., Ter Laak E.A., De Gee A.L. Corynebacterium pseudotuberculosis in milk of CL affected goats. Vet. Rec. 1990;127:387. PubMed

Goldberger A.C., Lipsky B.A., Plorde J.J. Suppurative Granulomatous lymphadenitis caused by Corynebacterium ovis (pseudotuberculosis) Am. J. Clin. Pathol. 1981;76:486–490. doi: 10.1093/ajcp/76.4.486. PubMed DOI

Nabih A.M., Hussein H.A., El-Wakeel S.A., Abd El-Razik K.A., Gomaa A.M. Corynebacterium pseudotuberculosis mastitis in Egyptian dairy goats. Vet. World. 2018;11:1574–1580. doi: 10.14202/vetworld.2018.1574-1580. PubMed DOI PMC

Bockelmann W., Hoppe-Seyler T. The surface flora of bacterial smear-ripened cheeses from cow’s and goat´s milk. Int. Dairy J. 2001;11:307–314. doi: 10.1016/S0958-6946(01)00060-7. DOI

Folliero V., Dell’Annunziata F., Roscetto E., Cammarota M., De Filippis A., Schiraldi C., Catania M.R., Casolaro V., Perrella A., Galdiero M., et al. Niclosamide as a Repurposing Drug against Corynebacterium striatum Multidrug-Resistant Infections. Antibiotics. 2022;11:5. doi: 10.3390/antibiotics11050651. PubMed DOI PMC

Lacerda Roberto d.J.P., Limeira C.H., da Costa Barnabé N.N., Soares R.R., Silva M., de Barros Gomes A.A., Dos Santos Higino S.S., Azevedo d.S.S., Alves C.J. Antibody detection and molecular analysis for Mycobacterium avium subspecies paratuberculosis (MAP) in goat milk: Systematic review and meta-analysis. Res. Vet. Sci. 2021;135:72–77. doi: 10.1016/j.rvsc.2021.01.004. PubMed DOI

Dow C.T. Hermon-Taylor: M. paratuberculosis and Crohn’s Disease-The Book of Revelation According to John. Pathogens. 2021;10:1469. doi: 10.3390/pathogens10111469. PubMed DOI PMC

Wagner M., Melzner D., Bagò Z., Winter P., Egerbacher M., Schilcher F., Zangana A., Schoder D. Outbreak of clinical listeriosis in sheep: Evaluation from possible contamination routes from feed to raw produce and humans. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2005;52:278–283. doi: 10.1111/j.1439-0450.2005.00866.x. PubMed DOI

Brugère-Picoux J. Ovine listeriosis. Small Rumin. Res. 2008;76:12–20. doi: 10.1016/j.smallrumres.2007.12.022. DOI

Monday S.R., Bohach G.A. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 1999;37:3411–3414. doi: 10.1128/JCM.37.10.3411-3414.1999. PubMed DOI PMC

Løvseth A., Loncarevic S., Berdal K.G. Modified multiplex PCR method for detection of pyrogenic exotoxin genes in staphylococcal isolates. J. Clin. Microbiol. 2004;42:3869–3872. doi: 10.1128/JCM.42.8.3869-3872.2004. PubMed DOI PMC

Peel M.M., Palmer G.G., Stacpoole A.M., Kerr T.G. Human lymphadenitis due to Corynebacterium pseudotuberculosis: Report of ten cases from Australia and review. Clin. Infect. Dis. 1997;24:185–191. doi: 10.1093/clinids/24.2.185. PubMed DOI

Djonne B., Jensen M.R., Grant I.R., Holstad G. Detection by immunomagnetic PCR of Mycobacterium avium subsp paratuberculosis in milk from dairy goats in Norway. Vet. Microbiol. 2003;92:135–143. doi: 10.1016/S0378-1135(02)00355-3. PubMed DOI

Kumar S., Singh S.V., Sevilla I., Singh A.V., Whittington R.J., Juste R.A., Sharma G., Singh P.K., Sohal J.S. Lacto-prevalence, genotyping of Mycobacterium avium subspecies paratuberculosis and evaluation of three diagnostic tests in milk of naturally infected goatherds. Small Rumin. Res. 2008;74:37–44. doi: 10.1016/j.smallrumres.2007.03.005. DOI

Williams A.G., Withers S.E. Microbiological characterisation of artisanal farmhouse cheeses manufactured in Scotland. Int. J. Dairy Technol. 2010;63:356–369. doi: 10.1111/j.1471-0307.2010.00596.x. DOI

Botsaris G., Slana I., Liapi M., Dodd C., Economides C., Rees C., Pavlik I. Rapid detection methods for viable Mycobacterium avium subspecies paratuberculosis in milk and cheese. Int. J. Food Microbiol. 2010;141((Suppl. S1)):S87–S90. doi: 10.1016/j.ijfoodmicro.2010.03.016. PubMed DOI

Galiero A., Fratini F., Turchi B., Colombani G., Nuvoloni R. Detection of Mycobacterium avium subsp. paratuberculosis in a sheep flock in Tuscany. Trop. Anim. Health Prod. 2015;47:1567–1571. doi: 10.1007/s11250-015-0899-z. PubMed DOI

Sechi L.A., Dow C.T. Mycobacterium avium ss. paratuberculosis Zoonosis the Hundred Year War—Beyond Crohn’s Disease. Front. Immunol. 2015;6:96. doi: 10.3389/fimmu.2015.00096. PubMed DOI PMC

Pagliasso G., Di Blasio A., Vitale N., Romano A., Decastelli L., Quasso A., Ricchi M., Dondo A., Pastorino P., Gennero M.S., et al. Goat Paratuberculosis: Experimental Model for the Evaluation of Mycobacterium Persistence in Raw Milk Cheese. Microorganisms. 2021;9:2032. doi: 10.3390/microorganisms9102032. PubMed DOI PMC

Hanifian S. Survival of Mycobacterium avium subsp. paratuberculosis in ultra-filtered white cheese. Lett. Appl. Microbiol. 2014;58:466–471. doi: 10.1111/lam.12215. PubMed DOI

Klanicova B., Slana I., Roubal P., Pavlik I., Kralik P. Mycobacterium avium subsp. paratuberculosis survival during fermentation of soured milk products detected by culture and quantitative real time PCR methods. Int. J. Food Microbiol. 2012;157:150–155. doi: 10.1016/j.ijfoodmicro.2012.04.021. PubMed DOI

Gonzales-Barron U., Gonçalves-Tenório A., Rodrigues V., Cadavez V. Foodborne pathogens in raw milk and cheese of sheep and goat origin: A meta-analysis approach. Curr. Opin. Food Sci. 2017;18:7–13. doi: 10.1016/j.cofs.2017.10.002. DOI

Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 2008;128:250–257. doi: 10.1016/j.ijfoodmicro.2008.08.013. PubMed DOI

Pena J.L., Schwarz D.G.G., Brasil A.W.D., de Oliveira L.L., Caldeira J.L.A., Moreira M.A.S. Differences in the coinfective process of Staphylococcus aureus and Streptococcus agalactiae in bovine mammary epithelial cells infected by Mycobacterium avium subsp. paratuberculosis. Microb. Pathog. 2020;149:104476. doi: 10.1016/j.micpath.2020.104476. PubMed DOI

Pexara A., Solomakos N., Sergelidis D., Angelidis A.S., Govaris A. Occurrence and antibiotic resistance of enterotoxigenic Staphylococcus aureus in raw ovine and caprine milk in Greece. Dairy Sci. Technol. 2016;96:345–357. doi: 10.1007/s13594-015-0272-z. DOI

Morandi S., Brasca M., Lodi R., Cremonesi P., Castiglioni B. Detection of classical enterotoxins and identification of enterotoxin genes in Staphylococcus aureus from milk and dairy products. Vet. Microbiol. 2007;124:66–72. doi: 10.1016/j.vetmic.2007.03.014. PubMed DOI

Jørgensen H.J., Mørk T., Høgåsen H.R., Rørvik L.M. Enterotoxigenic Staphylococcus aureus in bulk milk in Norway. J. Appl. Microbiol. 2005;99:158–166. doi: 10.1111/j.1365-2672.2005.02569.x. PubMed DOI

Pexara A., Solomakos N., Govaris A. Prevalence of methicillin-resistant Staphylococcus aureus in milk and dairy products. J. Hell. Vet. Med. 2013;64:17–34. doi: 10.12681/jhvms.15449. DOI

Şanlıbaba P. Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. Int. J. Food Microbiol. 2022;361:109461. doi: 10.1016/j.ijfoodmicro.2021.109461. PubMed DOI

Borg M.A., Camilleri L. What Is Driving the Epidemiology of Methicillin-Resistant Staphylococcus aureus Infections in Europe? Microb. Drug Resist. 2021;27:889–894. doi: 10.1089/mdr.2020.0259. PubMed DOI

Zhang J., Wang J., Jin J., Li X., Zhang H.L., Shi X.N., Zhao C. Prevalence, antibiotic resistance, and enterotoxin genes of Staphylococcus aureus isolated from milk and dairy products worldwide: A systematic review and meta-analysis. Food Res. Int. 2022;162:111969. doi: 10.1016/j.foodres.2022.111969. PubMed DOI

Umeda K., Ono H.K., Wada T., Motooka D., Nakamura S., Nakamura H., Hu D.L. High production of egc2-related staphylococcal enterotoxins caused a food poisoning outbreak. Int. J. Food Microbiol. 2021;357:109366. doi: 10.1016/j.ijfoodmicro.2021.109366. PubMed DOI

EFSA Scientific Opinion of the Panel on Biological Hazards on a request from the European Food Safety Authority on foodborne antimicrobial resistance as a biological hazard. EFSA J. 2008;765:1–87.

Scherrer D., Corti S., Muehlherr J.E., Zweifel C., Stephan R. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank milk samples of goats and sheep. Vet. Microbiol. 2004;101:101–107. doi: 10.1016/j.vetmic.2004.03.016. PubMed DOI

Kadariya J., Smith T.C., Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. Biomed. Res. Int. 2014;2014:827965. doi: 10.1155/2014/827965. PubMed DOI PMC

Macori G., Giacinti G., Bellio A., Gallina S., Bianchi D.M., Sagrafoli D., Marri N., Giangolini G., Amatiste S., Decastelli L. Molecular Epidemiology of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus in the Ovine Dairy Chain and in Farm-Related Humans. Toxins. 2017;9:161. doi: 10.3390/toxins9050161. PubMed DOI PMC

Verraes C., Vlaemynck G., Van Weyenberg S., De Zutter L., Daube G., Sindic M., Uyttendaele M., Herman L. A review of the microbiological hazards of dairy products made from raw milk. Int. Dairy J. 2015;50:32–44. doi: 10.1016/j.idairyj.2015.05.011. DOI

Vojkovska H., Kubikova I., Kralik P. Evaluation of DNA extraction methods for PCR-based detection of Listeria monocytogenes from vegetables. Lett. Appl. Microbiol. 2015;60:265–272. doi: 10.1111/lam.12367. PubMed DOI

Pacheco L.G.C., Pena R.R., Castro T.L.P., Dorella F.A., Bahia R.C., Carminati R., Frota M.N.L., Oliveira S.C., Meyer R., Alves F.S.F., et al. Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J. Med. Microbiol. 2007;56:480–486. doi: 10.1099/jmm.0.46997-0. PubMed DOI

D’Afonseca V., Prosdocimi F., Dorella F.A., Pacheco L.G.C., Moraes P.M., Pena I., Ortega J.M., Teixeira S., Oliveira S.C., Coser E.M., et al. Survey of genome organization and gene content of Corynebacterium pseudotuberculosis. Microbiol. Res. 2010;165:312–320. doi: 10.1016/j.micres.2009.05.009. PubMed DOI

Martineau F., Picard F.J., Roy P.H., Ouellette M., Bergeron M.G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J. Clin. Microbiol. 1998;36:618–623. doi: 10.1128/JCM.36.3.618-623.1998. PubMed DOI PMC

Brakstad O.G., Aasbakk K., Maeland J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992;30:1654–1660. doi: 10.1128/jcm.30.7.1654-1660.1992. PubMed DOI PMC

Morávková M., Verbíková V., Michna V., Babák V., Cahlíková H., Karpíšková R., Králík P. Detection and quantification of Listeria monocytogenes in ready-to-eat vegetables, frozen vegetables and sprouts examined by culture methods and real-time PCR. J. Food Nutr. Res. 2017;5:832–837. doi: 10.12691/jfnr-5-11-6. DOI

Oliveira D.C., de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002;46:2155–2161. doi: 10.1128/AAC.46.7.2155-2161.2002. PubMed DOI PMC

Martineau F., Picard F.J., Roy P.H., Ouellette M., Bergeron M.G. Species-specific and ubiquitous DNA-based assays for rapid identification of Staphylococcus epidermidis. J. Clin. Microbiol. 1996;34:2888–2893. doi: 10.1128/jcm.34.12.2888-2893.1996. PubMed DOI PMC

Gatti M., De Dea Lindner J., De Lorentiis A., Bottari B., Santarelli M., Bernini V., Neviani E. Dynamics of whole and lysed bacterial cells during Parmigiano-Reggiano cheese production and ripening. Appl. Environ. Microbiol. 2008;74:6161–6167. doi: 10.1128/AEM.00871-08. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...