First Evidence of the Presence of the Causative Agent of Caseous Lymphadenitis-Corynebacterium pseudotuberculosis in Dairy Products Produced from the Milk of Small Ruminants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910082 and RO0518
Ministry of Agriculture
PubMed
36558758
PubMed Central
PMC9786561
DOI
10.3390/pathogens11121425
PII: pathogens11121425
Knihovny.cz E-zdroje
- Klíčová slova
- CLA, MRSA, cultivation, dairy products, food safety, paratuberculosis, qPCR, small ruminants, zoonosis,
- Publikační typ
- časopisecké články MeSH
This study focused on the detection and quantification of selected bacteria and on the presence of enterotoxin genes in milk and dairy products from sheep and goat farms in the Czech Republic using quantitative real-time PCR (qPCR) and multiplex PCR (PCR). The presence of Corynebacterium pseudotuberculosis (CP), Mycobacterium avium subsp. paratuberculosis (MAP), Listeria monocytogenes, Staphylococcus aureus, S. aureus enterotoxin genes and methicillin-resistant Staphylococcus aureus (MRSA) was determined in 18 milk samples, 28 fresh cheeses, 20 ripened cheeses and 14 yoghurts. The serological status of the herds in relation to CP and MAP was taken into account. The most frequently detected bacterium was S. aureus (48.8%), and subsequent PCR revealed 11 MRSA positive samples. The S. aureus enterotoxin genes seg, sei and sec were detected in two goat cheeses. Cheese samples showed a statistically higher risk of SA and MRSA occurrence. CP (8.8%) and MAP (13.8%) were detected by qPCR on two different seropositive farms. Cultivation of qPCR positive CP samples on agar plates supplemented with potassium tellurite showed the presence of viable bacterium. The results obtained confirmed the necessity of monitoring the infectious status of dairy animals and rapid diagnosis of bacterial pathogens in milk and dairy products.
Zobrazit více v PubMed
Ganter M. Zoonotic risks from small ruminants. Vet. Microbiol. 2015;181:53–65. doi: 10.1016/j.vetmic.2015.07.015. PubMed DOI
EFSA Scientific Opinion on the public health risks related to the consumption of raw drinking milk. EFSA J. 2015;13:95. doi: 10.2903/j.efsa.2015.3940. DOI
Hermans K., Devriese L.A., Haesebrouck F. Staphylococcus. In: Gyles C.L.P., Prescott J.F., Songer J.G., Thoen C.O., editors. Pathogenesis of Bacterial Infections in Animals. 4th ed. Volume 4. Blackwell Publishing; Iowa, IA, USA: 2010. pp. 75–85.
Huijps K., Lam T.J., Hogeveen H. Costs of mastitis: Facts and perception. J. Dairy Res. 2008;75:113–120. doi: 10.1017/S0022029907002932. PubMed DOI
Le Loir Y., Baron F., Gautier M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2003;2:63–76. PubMed
Ono H.K., Omoe K., Imanishi K., Iwakabe Y., Hu D.L., Kato H., Saito N., Nakane A., Uchiyama T., Shinagawa K. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect. Immun. 2008;76:4999–5005. doi: 10.1128/IAI.00045-08. PubMed DOI PMC
Lowy F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003;111:1265–1273. doi: 10.1172/JCI18535. PubMed DOI PMC
Pantosti A. Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Front. Microbiol. 2012;3:127. doi: 10.3389/fmicb.2012.00127. PubMed DOI PMC
Hahne J., Kloster T., Rathmann S., Weber M., Lipski A. Isolation and characterization of Corynebacterium spp. from bulk tank raw cow’s milk of different dairy farms in Germany. PLoS ONE. 2018;13:e0194365. doi: 10.1371/journal.pone.0194365. PubMed DOI PMC
Oliveira A., Oliveira L.C., Aburjaile F., Benevides L., Tiwari S., Jamal S.B., Silva A., Figueiredo H.C.P., Ghosh P., Portela R.W., et al. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Front. Microbiol. 2017;8:1937. doi: 10.3389/fmicb.2017.01937. PubMed DOI PMC
Baird G.J., Fontaine M.C. Corynebacterium pseudotuberculosis and its role in ovine Caseous lymphadenitis. J Comp Pathol. 2007;137:179–210. doi: 10.1016/j.jcpa.2007.07.002. PubMed DOI
Radostits O.M., Gay C.C., Blood D.C., Hinchcliff K.W. Veterinary Medicine. 9th ed. W.B. Saunders; London, UK: 2000. Caseous lymphadenitis in sheep and goats; pp. 727–730.
Schreuder B.E., Ter Laak E.A., De Gee A.L. Corynebacterium pseudotuberculosis in milk of CL affected goats. Vet. Rec. 1990;127:387. PubMed
Goldberger A.C., Lipsky B.A., Plorde J.J. Suppurative Granulomatous lymphadenitis caused by Corynebacterium ovis (pseudotuberculosis) Am. J. Clin. Pathol. 1981;76:486–490. doi: 10.1093/ajcp/76.4.486. PubMed DOI
Nabih A.M., Hussein H.A., El-Wakeel S.A., Abd El-Razik K.A., Gomaa A.M. Corynebacterium pseudotuberculosis mastitis in Egyptian dairy goats. Vet. World. 2018;11:1574–1580. doi: 10.14202/vetworld.2018.1574-1580. PubMed DOI PMC
Bockelmann W., Hoppe-Seyler T. The surface flora of bacterial smear-ripened cheeses from cow’s and goat´s milk. Int. Dairy J. 2001;11:307–314. doi: 10.1016/S0958-6946(01)00060-7. DOI
Folliero V., Dell’Annunziata F., Roscetto E., Cammarota M., De Filippis A., Schiraldi C., Catania M.R., Casolaro V., Perrella A., Galdiero M., et al. Niclosamide as a Repurposing Drug against Corynebacterium striatum Multidrug-Resistant Infections. Antibiotics. 2022;11:5. doi: 10.3390/antibiotics11050651. PubMed DOI PMC
Lacerda Roberto d.J.P., Limeira C.H., da Costa Barnabé N.N., Soares R.R., Silva M., de Barros Gomes A.A., Dos Santos Higino S.S., Azevedo d.S.S., Alves C.J. Antibody detection and molecular analysis for Mycobacterium avium subspecies paratuberculosis (MAP) in goat milk: Systematic review and meta-analysis. Res. Vet. Sci. 2021;135:72–77. doi: 10.1016/j.rvsc.2021.01.004. PubMed DOI
Dow C.T. Hermon-Taylor: M. paratuberculosis and Crohn’s Disease-The Book of Revelation According to John. Pathogens. 2021;10:1469. doi: 10.3390/pathogens10111469. PubMed DOI PMC
Wagner M., Melzner D., Bagò Z., Winter P., Egerbacher M., Schilcher F., Zangana A., Schoder D. Outbreak of clinical listeriosis in sheep: Evaluation from possible contamination routes from feed to raw produce and humans. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2005;52:278–283. doi: 10.1111/j.1439-0450.2005.00866.x. PubMed DOI
Brugère-Picoux J. Ovine listeriosis. Small Rumin. Res. 2008;76:12–20. doi: 10.1016/j.smallrumres.2007.12.022. DOI
Monday S.R., Bohach G.A. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 1999;37:3411–3414. doi: 10.1128/JCM.37.10.3411-3414.1999. PubMed DOI PMC
Løvseth A., Loncarevic S., Berdal K.G. Modified multiplex PCR method for detection of pyrogenic exotoxin genes in staphylococcal isolates. J. Clin. Microbiol. 2004;42:3869–3872. doi: 10.1128/JCM.42.8.3869-3872.2004. PubMed DOI PMC
Peel M.M., Palmer G.G., Stacpoole A.M., Kerr T.G. Human lymphadenitis due to Corynebacterium pseudotuberculosis: Report of ten cases from Australia and review. Clin. Infect. Dis. 1997;24:185–191. doi: 10.1093/clinids/24.2.185. PubMed DOI
Djonne B., Jensen M.R., Grant I.R., Holstad G. Detection by immunomagnetic PCR of Mycobacterium avium subsp paratuberculosis in milk from dairy goats in Norway. Vet. Microbiol. 2003;92:135–143. doi: 10.1016/S0378-1135(02)00355-3. PubMed DOI
Kumar S., Singh S.V., Sevilla I., Singh A.V., Whittington R.J., Juste R.A., Sharma G., Singh P.K., Sohal J.S. Lacto-prevalence, genotyping of Mycobacterium avium subspecies paratuberculosis and evaluation of three diagnostic tests in milk of naturally infected goatherds. Small Rumin. Res. 2008;74:37–44. doi: 10.1016/j.smallrumres.2007.03.005. DOI
Williams A.G., Withers S.E. Microbiological characterisation of artisanal farmhouse cheeses manufactured in Scotland. Int. J. Dairy Technol. 2010;63:356–369. doi: 10.1111/j.1471-0307.2010.00596.x. DOI
Botsaris G., Slana I., Liapi M., Dodd C., Economides C., Rees C., Pavlik I. Rapid detection methods for viable Mycobacterium avium subspecies paratuberculosis in milk and cheese. Int. J. Food Microbiol. 2010;141((Suppl. S1)):S87–S90. doi: 10.1016/j.ijfoodmicro.2010.03.016. PubMed DOI
Galiero A., Fratini F., Turchi B., Colombani G., Nuvoloni R. Detection of Mycobacterium avium subsp. paratuberculosis in a sheep flock in Tuscany. Trop. Anim. Health Prod. 2015;47:1567–1571. doi: 10.1007/s11250-015-0899-z. PubMed DOI
Sechi L.A., Dow C.T. Mycobacterium avium ss. paratuberculosis Zoonosis the Hundred Year War—Beyond Crohn’s Disease. Front. Immunol. 2015;6:96. doi: 10.3389/fimmu.2015.00096. PubMed DOI PMC
Pagliasso G., Di Blasio A., Vitale N., Romano A., Decastelli L., Quasso A., Ricchi M., Dondo A., Pastorino P., Gennero M.S., et al. Goat Paratuberculosis: Experimental Model for the Evaluation of Mycobacterium Persistence in Raw Milk Cheese. Microorganisms. 2021;9:2032. doi: 10.3390/microorganisms9102032. PubMed DOI PMC
Hanifian S. Survival of Mycobacterium avium subsp. paratuberculosis in ultra-filtered white cheese. Lett. Appl. Microbiol. 2014;58:466–471. doi: 10.1111/lam.12215. PubMed DOI
Klanicova B., Slana I., Roubal P., Pavlik I., Kralik P. Mycobacterium avium subsp. paratuberculosis survival during fermentation of soured milk products detected by culture and quantitative real time PCR methods. Int. J. Food Microbiol. 2012;157:150–155. doi: 10.1016/j.ijfoodmicro.2012.04.021. PubMed DOI
Gonzales-Barron U., Gonçalves-Tenório A., Rodrigues V., Cadavez V. Foodborne pathogens in raw milk and cheese of sheep and goat origin: A meta-analysis approach. Curr. Opin. Food Sci. 2017;18:7–13. doi: 10.1016/j.cofs.2017.10.002. DOI
Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 2008;128:250–257. doi: 10.1016/j.ijfoodmicro.2008.08.013. PubMed DOI
Pena J.L., Schwarz D.G.G., Brasil A.W.D., de Oliveira L.L., Caldeira J.L.A., Moreira M.A.S. Differences in the coinfective process of Staphylococcus aureus and Streptococcus agalactiae in bovine mammary epithelial cells infected by Mycobacterium avium subsp. paratuberculosis. Microb. Pathog. 2020;149:104476. doi: 10.1016/j.micpath.2020.104476. PubMed DOI
Pexara A., Solomakos N., Sergelidis D., Angelidis A.S., Govaris A. Occurrence and antibiotic resistance of enterotoxigenic Staphylococcus aureus in raw ovine and caprine milk in Greece. Dairy Sci. Technol. 2016;96:345–357. doi: 10.1007/s13594-015-0272-z. DOI
Morandi S., Brasca M., Lodi R., Cremonesi P., Castiglioni B. Detection of classical enterotoxins and identification of enterotoxin genes in Staphylococcus aureus from milk and dairy products. Vet. Microbiol. 2007;124:66–72. doi: 10.1016/j.vetmic.2007.03.014. PubMed DOI
Jørgensen H.J., Mørk T., Høgåsen H.R., Rørvik L.M. Enterotoxigenic Staphylococcus aureus in bulk milk in Norway. J. Appl. Microbiol. 2005;99:158–166. doi: 10.1111/j.1365-2672.2005.02569.x. PubMed DOI
Pexara A., Solomakos N., Govaris A. Prevalence of methicillin-resistant Staphylococcus aureus in milk and dairy products. J. Hell. Vet. Med. 2013;64:17–34. doi: 10.12681/jhvms.15449. DOI
Şanlıbaba P. Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. Int. J. Food Microbiol. 2022;361:109461. doi: 10.1016/j.ijfoodmicro.2021.109461. PubMed DOI
Borg M.A., Camilleri L. What Is Driving the Epidemiology of Methicillin-Resistant Staphylococcus aureus Infections in Europe? Microb. Drug Resist. 2021;27:889–894. doi: 10.1089/mdr.2020.0259. PubMed DOI
Zhang J., Wang J., Jin J., Li X., Zhang H.L., Shi X.N., Zhao C. Prevalence, antibiotic resistance, and enterotoxin genes of Staphylococcus aureus isolated from milk and dairy products worldwide: A systematic review and meta-analysis. Food Res. Int. 2022;162:111969. doi: 10.1016/j.foodres.2022.111969. PubMed DOI
Umeda K., Ono H.K., Wada T., Motooka D., Nakamura S., Nakamura H., Hu D.L. High production of egc2-related staphylococcal enterotoxins caused a food poisoning outbreak. Int. J. Food Microbiol. 2021;357:109366. doi: 10.1016/j.ijfoodmicro.2021.109366. PubMed DOI
EFSA Scientific Opinion of the Panel on Biological Hazards on a request from the European Food Safety Authority on foodborne antimicrobial resistance as a biological hazard. EFSA J. 2008;765:1–87.
Scherrer D., Corti S., Muehlherr J.E., Zweifel C., Stephan R. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank milk samples of goats and sheep. Vet. Microbiol. 2004;101:101–107. doi: 10.1016/j.vetmic.2004.03.016. PubMed DOI
Kadariya J., Smith T.C., Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. Biomed. Res. Int. 2014;2014:827965. doi: 10.1155/2014/827965. PubMed DOI PMC
Macori G., Giacinti G., Bellio A., Gallina S., Bianchi D.M., Sagrafoli D., Marri N., Giangolini G., Amatiste S., Decastelli L. Molecular Epidemiology of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus in the Ovine Dairy Chain and in Farm-Related Humans. Toxins. 2017;9:161. doi: 10.3390/toxins9050161. PubMed DOI PMC
Verraes C., Vlaemynck G., Van Weyenberg S., De Zutter L., Daube G., Sindic M., Uyttendaele M., Herman L. A review of the microbiological hazards of dairy products made from raw milk. Int. Dairy J. 2015;50:32–44. doi: 10.1016/j.idairyj.2015.05.011. DOI
Vojkovska H., Kubikova I., Kralik P. Evaluation of DNA extraction methods for PCR-based detection of Listeria monocytogenes from vegetables. Lett. Appl. Microbiol. 2015;60:265–272. doi: 10.1111/lam.12367. PubMed DOI
Pacheco L.G.C., Pena R.R., Castro T.L.P., Dorella F.A., Bahia R.C., Carminati R., Frota M.N.L., Oliveira S.C., Meyer R., Alves F.S.F., et al. Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J. Med. Microbiol. 2007;56:480–486. doi: 10.1099/jmm.0.46997-0. PubMed DOI
D’Afonseca V., Prosdocimi F., Dorella F.A., Pacheco L.G.C., Moraes P.M., Pena I., Ortega J.M., Teixeira S., Oliveira S.C., Coser E.M., et al. Survey of genome organization and gene content of Corynebacterium pseudotuberculosis. Microbiol. Res. 2010;165:312–320. doi: 10.1016/j.micres.2009.05.009. PubMed DOI
Martineau F., Picard F.J., Roy P.H., Ouellette M., Bergeron M.G. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J. Clin. Microbiol. 1998;36:618–623. doi: 10.1128/JCM.36.3.618-623.1998. PubMed DOI PMC
Brakstad O.G., Aasbakk K., Maeland J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992;30:1654–1660. doi: 10.1128/jcm.30.7.1654-1660.1992. PubMed DOI PMC
Morávková M., Verbíková V., Michna V., Babák V., Cahlíková H., Karpíšková R., Králík P. Detection and quantification of Listeria monocytogenes in ready-to-eat vegetables, frozen vegetables and sprouts examined by culture methods and real-time PCR. J. Food Nutr. Res. 2017;5:832–837. doi: 10.12691/jfnr-5-11-6. DOI
Oliveira D.C., de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002;46:2155–2161. doi: 10.1128/AAC.46.7.2155-2161.2002. PubMed DOI PMC
Martineau F., Picard F.J., Roy P.H., Ouellette M., Bergeron M.G. Species-specific and ubiquitous DNA-based assays for rapid identification of Staphylococcus epidermidis. J. Clin. Microbiol. 1996;34:2888–2893. doi: 10.1128/jcm.34.12.2888-2893.1996. PubMed DOI PMC
Gatti M., De Dea Lindner J., De Lorentiis A., Bottari B., Santarelli M., Bernini V., Neviani E. Dynamics of whole and lysed bacterial cells during Parmigiano-Reggiano cheese production and ripening. Appl. Environ. Microbiol. 2008;74:6161–6167. doi: 10.1128/AEM.00871-08. PubMed DOI PMC