Exome sequencing identifies HELB as a novel susceptibility gene for non-mucinous, non-high-grade-serous epithelial ovarian cancer

. 2025 Mar ; 33 (3) : 297-303. [epub] 20250212

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39939714

Grantová podpora
R00 CA256519 NCI NIH HHS - United States
R01 CA178535 NCI NIH HHS - United States
PRCPJT-May21\100006 Cancer Research UK (CRUK)
P30 CA015083 NCI NIH HHS - United States
R01 CA248288 NCI NIH HHS - United States
P50 CA136393 NCI NIH HHS - United States

Odkazy

PubMed 39939714
PubMed Central PMC11894177
DOI 10.1038/s41431-025-01786-0
PII: 10.1038/s41431-025-01786-0
Knihovny.cz E-zdroje

Rare, germline loss-of-function variants in a handful of DNA repair genes are associated with epithelial ovarian cancer. The aim of this study was to evaluate the role of rare, coding, loss-of-function variants across the genome in epithelial ovarian cancer. We carried out a gene-by-gene burden test with various histotypes using data from 2573 non-mucinous cases and 13,923 controls. Twelve genes were associated at a False Discovery Rate of less than 0.1 of which seven were the known ovarian cancer susceptibility genes BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH6 and PALB2. The other five genes were OR2T35, HELB, MYO1A and GABRP which were associated with non-high-grade serous ovarian cancer and MIGA1 which was associated with high-grade serous ovarian cancer. Further support for the association of HELB association comes from the observation that loss-of-function variants in HELB are associated with age at natural menopause and Mendelian randomisation analysis shows an association between genetically predicted age at natural menopause and endometrioid ovarian cancer, but not high-grade serous ovarian cancer.

Adult Cancer Program Lowy Cancer Research Centre University of NSW Sydney NSW Australia

Center for Inherited Oncogenesis Department of Medicine UT Health San Antonio San Antonio Texas USA

Centre for Cancer Research The Westmead Institute for Medical Research Sydney NSW Australia

Department of Biomedical Sciences Cedars Sinai Medical Centre Los Angeles CA USA

Department of Computational Biomedicine Cedars Sinai Medical Centre Los Angeles CA USA

Department of Gynaecological Oncology Westmead Hospital Sydney NSW Australia

Department of Oncology University of Cambridge Cambridge UK

Department of Public Health and Primary Care University of Cambridge Cambridge UK

Department of Research Cancer Registry of Norway Norwegian Institute of Public Health Oslo Norway

Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany

Division of Cancer Prevention and Control Roswell Park Comprehensive Cancer Center Buffalo NY USA

Division of Gynaecological Oncology Leuven Cancer Institute University Hospital Leuven and KU Leuven Leuven Belgium

Division of Obstetrics and Gynaecology Medical School University of Western Australia Crawley WA Australia

Gynaecology Research Unit Hannover Medical School Hannover Germany

Human Molecular Genetics Laboratory National Centre for Scientific Research Athens Greece

Institute of Medical Biochemistry and Laboratory Diagnostics 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czechia

Keck School of Medicine Division of Medical Oncology University of Southern California Los Angeles CA USA

Mayo Clinic Rochester MN USA

MD Anderson Cancer Center Houston TX USA

Peter MacCallum Cancer Centre Melbourne VIC Australia

QIMR Berghofer Medical Research Institute Brisbane QLD Australia

School of Clinical Medicine Faculty of Medicine and Health University of NSW Sydney NSW Australia

Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia

The Daffodil Centre The University of Sydney A JOINT Venture with Cancer Council NSW Sydney NSW Australia

University of California Los Angeles Los Angeles CA USA

University of Chicago Medicine Comprehensive Cancer Center Chicago IL USA

Před aktualizací

PubMed

Zobrazit více v PubMed

Ramus SJ, Song H, Dicks E, Tyrer JP, Rosenthal AN, Intermaggio MP, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 2015; 107. PubMed PMC

Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol. 2015;33:2901–7. PubMed PMC

Song H, Dicks EM, Tyrer J, Intermaggio M, Chenevix-Trench G, Bowtell DD, et al. Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer. J Med Genet. 2021;58:305–13. PubMed PMC

Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet. 2017;49:680–91. PubMed PMC

Dareng EO, Coetzee SG, Tyrer JP, Peng PC, Rosenow W, Chen S, et al. Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions. Am J Hum Genet. 2024; 111: 1061–83. PubMed PMC

Cuellar-Partida G, Lu Y, Dixon SC, Australian Ovarian Cancer Study Group, Fasching PA, et al. Assessing the genetic architecture of epithelial ovarian cancer histological subtypes. Hum Genet. 2016;135:741–56. PubMed PMC

Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7. PubMed PMC

Anon: Picard tools. https://broadinstitute.github.io/picard/.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. PubMed PMC

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303. PubMed PMC

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8. PubMed PMC

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform. 2013;43:11 10 11–11 10 33. PubMed PMC

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. PubMed PMC

Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler MD, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021;599:628–34. PubMed PMC

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26. PubMed PMC

Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–94. PubMed

Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. NatGenet. 2013;45:362–70. PubMed PMC

Permuth JB, Pirie A, Ann Chen Y, Lin HY, Reid BM, Chen Z, et al. Exome genotyping arrays to identify rare and low-frequency variants associated with epithelial ovarian cancer risk. Hum Mol Genet. 2016;25:3600–12. PubMed PMC

Song H, Ramus SJ, Tyrer J, Bolton KL, Gentry-Maharaj A, Wozniak E, et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet. 2009;41:996–1000. PubMed PMC

Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9. PubMed PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.

Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet. 2007;81:208–27. PubMed PMC

Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018; 7. PubMed PMC

Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42:1497–501. PubMed PMC

Pedersen T. patchwork: The Composer of Plots, 2022, R package version 1.1.2 edn.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.

R Core Team: R: A language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria, 2021.

R Studio Team: R Studio: Integrated development for R. RStudio, PBC, Boston, MA, 2020.

Song H, Cicek MS, Dicks E, Harrington P, Ramus SJ, Cunningham JM, et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet. 2014;23:4703–9. PubMed PMC

Liu XM, Zhang YP, Ji SY, Li BT, Tian X, Li D, et al. Mitoguardin-1 and -2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions. Oncotarget. 2016;7:1155–67. PubMed PMC

Soccio RE, Adams RM, Romanowski MJ, Sehayek E, Burley SK, Breslow JL. The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci USA. 2002;99:6943–8. PubMed PMC

Cesareni G, Panni S, Nardelli G, Castagnoli L. Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Lett. 2002;513:38–44. PubMed

Hazeslip L, Zafar MK, Chauhan MZ, Byrd AK. Genome maintenance by DNA helicase B. Genes 2020; 11. PubMed PMC

Ward LD, Parker MM, Deaton AM, Tu HC, Flynn-Carroll AO, Hinkle G, et al. Rare coding variants in DNA damage repair genes associated with timing of natural menopause. HGG Adv. 2022;3:100079. PubMed PMC

Ruth KS, Day FR, Hussain J, Martinez-Marchal A, Aiken CE, Azad A, et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature. 2021;596:393–7. PubMed PMC

Horackova K, Zemankova P, Nehasil P, Vocka M, Hovhannisyan M, Matejkova K, et al. A comprehensive analysis of germline predisposition to early-onset ovarian cancer. Sci Rep. 2024;14:16183. PubMed PMC

Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS, Ha G, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49:856–65. PubMed

Juvale IIA, Hassan Z, Has ATC. The emerging roles of pi subunit-containing GABA(A) receptors in different cancers. Int J Med Sci. 2021;18:3851–60. PubMed PMC

Wolska-Kusnierz B, Gregorek H, Chrzanowska K, Piatosa B, Pietrucha B, Heropolitanska-Pliszka E, et al. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options—a retrospective analysis. J Clin Immunol. 2015;35:538–49. PubMed

Subramanian DN, Zethoven M, McInerny S, Morgan JA, Rowley SM, Lee JEA, et al. Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes. Nat Commun. 2020;11:1640. PubMed PMC

Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–94. PubMed

Garsed DW, Pandey A, Fereday S, Kennedy CJ, Takahashi K, Alsop K, et al. The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer. NatGenet. 2022;54:1853–64. PubMed PMC

Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet. 2018;50:1262–70. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...