Exome sequencing identifies HELB as a novel susceptibility gene for non-mucinous, non-high-grade-serous epithelial ovarian cancer
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R00 CA256519
NCI NIH HHS - United States
R01 CA178535
NCI NIH HHS - United States
PRCPJT-May21\100006
Cancer Research UK (CRUK)
P30 CA015083
NCI NIH HHS - United States
R01 CA248288
NCI NIH HHS - United States
P50 CA136393
NCI NIH HHS - United States
PubMed
39939714
PubMed Central
PMC11894177
DOI
10.1038/s41431-025-01786-0
PII: 10.1038/s41431-025-01786-0
Knihovny.cz E-zdroje
- MeSH
- DNA-helikasy * genetika MeSH
- dospělí MeSH
- epiteliální ovariální karcinom genetika MeSH
- genetická predispozice k nemoci * MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory vaječníků * genetika patologie MeSH
- sekvenování exomu MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-helikasy * MeSH
Rare, germline loss-of-function variants in a handful of DNA repair genes are associated with epithelial ovarian cancer. The aim of this study was to evaluate the role of rare, coding, loss-of-function variants across the genome in epithelial ovarian cancer. We carried out a gene-by-gene burden test with various histotypes using data from 2573 non-mucinous cases and 13,923 controls. Twelve genes were associated at a False Discovery Rate of less than 0.1 of which seven were the known ovarian cancer susceptibility genes BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH6 and PALB2. The other five genes were OR2T35, HELB, MYO1A and GABRP which were associated with non-high-grade serous ovarian cancer and MIGA1 which was associated with high-grade serous ovarian cancer. Further support for the association of HELB association comes from the observation that loss-of-function variants in HELB are associated with age at natural menopause and Mendelian randomisation analysis shows an association between genetically predicted age at natural menopause and endometrioid ovarian cancer, but not high-grade serous ovarian cancer.
Adult Cancer Program Lowy Cancer Research Centre University of NSW Sydney NSW Australia
Center for Inherited Oncogenesis Department of Medicine UT Health San Antonio San Antonio Texas USA
Centre for Cancer Research The Westmead Institute for Medical Research Sydney NSW Australia
Department of Biomedical Sciences Cedars Sinai Medical Centre Los Angeles CA USA
Department of Computational Biomedicine Cedars Sinai Medical Centre Los Angeles CA USA
Department of Gynaecological Oncology Westmead Hospital Sydney NSW Australia
Department of Oncology University of Cambridge Cambridge UK
Department of Public Health and Primary Care University of Cambridge Cambridge UK
Department of Research Cancer Registry of Norway Norwegian Institute of Public Health Oslo Norway
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Cancer Prevention and Control Roswell Park Comprehensive Cancer Center Buffalo NY USA
Gynaecology Research Unit Hannover Medical School Hannover Germany
Human Molecular Genetics Laboratory National Centre for Scientific Research Athens Greece
MD Anderson Cancer Center Houston TX USA
Peter MacCallum Cancer Centre Melbourne VIC Australia
QIMR Berghofer Medical Research Institute Brisbane QLD Australia
School of Clinical Medicine Faculty of Medicine and Health University of NSW Sydney NSW Australia
Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
University of California Los Angeles Los Angeles CA USA
University of Chicago Medicine Comprehensive Cancer Center Chicago IL USA
Zobrazit více v PubMed
Ramus SJ, Song H, Dicks E, Tyrer JP, Rosenthal AN, Intermaggio MP, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 2015; 107. PubMed PMC
Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol. 2015;33:2901–7. PubMed PMC
Song H, Dicks EM, Tyrer J, Intermaggio M, Chenevix-Trench G, Bowtell DD, et al. Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer. J Med Genet. 2021;58:305–13. PubMed PMC
Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet. 2017;49:680–91. PubMed PMC
Dareng EO, Coetzee SG, Tyrer JP, Peng PC, Rosenow W, Chen S, et al. Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions. Am J Hum Genet. 2024; 111: 1061–83. PubMed PMC
Cuellar-Partida G, Lu Y, Dixon SC, Australian Ovarian Cancer Study Group, Fasching PA, et al. Assessing the genetic architecture of epithelial ovarian cancer histological subtypes. Hum Genet. 2016;135:741–56. PubMed PMC
Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7. PubMed PMC
Anon: Picard tools. https://broadinstitute.github.io/picard/.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. PubMed PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303. PubMed PMC
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8. PubMed PMC
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform. 2013;43:11 10 11–11 10 33. PubMed PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. PubMed PMC
Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler MD, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021;599:628–34. PubMed PMC
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26. PubMed PMC
Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–94. PubMed
Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. NatGenet. 2013;45:362–70. PubMed PMC
Permuth JB, Pirie A, Ann Chen Y, Lin HY, Reid BM, Chen Z, et al. Exome genotyping arrays to identify rare and low-frequency variants associated with epithelial ovarian cancer risk. Hum Mol Genet. 2016;25:3600–12. PubMed PMC
Song H, Ramus SJ, Tyrer J, Bolton KL, Gentry-Maharaj A, Wozniak E, et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet. 2009;41:996–1000. PubMed PMC
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet. 2007;81:208–27. PubMed PMC
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018; 7. PubMed PMC
Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42:1497–501. PubMed PMC
Pedersen T. patchwork: The Composer of Plots, 2022, R package version 1.1.2 edn.
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.
R Core Team: R: A language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria, 2021.
R Studio Team: R Studio: Integrated development for R. RStudio, PBC, Boston, MA, 2020.
Song H, Cicek MS, Dicks E, Harrington P, Ramus SJ, Cunningham JM, et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet. 2014;23:4703–9. PubMed PMC
Liu XM, Zhang YP, Ji SY, Li BT, Tian X, Li D, et al. Mitoguardin-1 and -2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions. Oncotarget. 2016;7:1155–67. PubMed PMC
Soccio RE, Adams RM, Romanowski MJ, Sehayek E, Burley SK, Breslow JL. The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci USA. 2002;99:6943–8. PubMed PMC
Cesareni G, Panni S, Nardelli G, Castagnoli L. Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Lett. 2002;513:38–44. PubMed
Hazeslip L, Zafar MK, Chauhan MZ, Byrd AK. Genome maintenance by DNA helicase B. Genes 2020; 11. PubMed PMC
Ward LD, Parker MM, Deaton AM, Tu HC, Flynn-Carroll AO, Hinkle G, et al. Rare coding variants in DNA damage repair genes associated with timing of natural menopause. HGG Adv. 2022;3:100079. PubMed PMC
Ruth KS, Day FR, Hussain J, Martinez-Marchal A, Aiken CE, Azad A, et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature. 2021;596:393–7. PubMed PMC
Horackova K, Zemankova P, Nehasil P, Vocka M, Hovhannisyan M, Matejkova K, et al. A comprehensive analysis of germline predisposition to early-onset ovarian cancer. Sci Rep. 2024;14:16183. PubMed PMC
Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS, Ha G, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49:856–65. PubMed
Juvale IIA, Hassan Z, Has ATC. The emerging roles of pi subunit-containing GABA(A) receptors in different cancers. Int J Med Sci. 2021;18:3851–60. PubMed PMC
Wolska-Kusnierz B, Gregorek H, Chrzanowska K, Piatosa B, Pietrucha B, Heropolitanska-Pliszka E, et al. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options—a retrospective analysis. J Clin Immunol. 2015;35:538–49. PubMed
Subramanian DN, Zethoven M, McInerny S, Morgan JA, Rowley SM, Lee JEA, et al. Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes. Nat Commun. 2020;11:1640. PubMed PMC
Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–94. PubMed
Garsed DW, Pandey A, Fereday S, Kennedy CJ, Takahashi K, Alsop K, et al. The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer. NatGenet. 2022;54:1853–64. PubMed PMC
Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet. 2018;50:1262–70. PubMed PMC