Population-specific validation and comparison of the performance of 77- and 313-variant polygenic risk scores for breast cancer risk prediction
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
LX22NPO5102
Ministry of Education, Youth and Sports of the Czech Republic
DRO-VFN-64165
Ministry of Health of the Czech Republic
NU20-09-00355
Ministry of Health of the Czech Republic
COOPERATIO
Grant Agency, Charles University
SVV260631
Grant Agency, Charles University
UNCE/24/MED/022
Grant Agency, Charles University
PubMed
38718029
DOI
10.1002/cncr.35337
Knihovny.cz E-zdroje
- Klíčová slova
- PRS313, PRS77, breast cancer, germline genetic testing, polygenic risk score,
- MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- genetické rizikové skóre MeSH
- hodnocení rizik metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- multifaktoriální dědičnost genetika MeSH
- nádory prsu * genetika MeSH
- retrospektivní studie MeSH
- rizikové faktory MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
BACKGROUND: The polygenic risk score (PRS) allows the quantification of the polygenic effect of many low-penetrance alleles on the risk of breast cancer (BC). This study aimed to evaluate the performance of two sets comprising 77 or 313 low-penetrance loci (PRS77 and PRS313) in patients with BC in the Czech population. METHODS: In a retrospective case-control study, variants were genotyped from both the PRS77 and PRS313 sets in 1329 patients with BC and 1324 noncancer controls, all women without germline pathogenic variants in BC predisposition genes. Odds ratios (ORs) were calculated according to the categorical PRS in individual deciles. Weighted Cox regression analysis was used to estimate the hazard ratio (HR) per standard deviation (SD) increase in PRS. RESULTS: The distributions of standardized PRSs in patients and controls were significantly different (p < 2.2 × 10-16) with both sets. PRS313 outperformed PRS77 in categorical and continuous PRS analyses. For patients in the highest 2.5% of PRS313, the risk reached an OR of 3.05 (95% CI, 1.66-5.89; p = 1.76 × 10-4). The continuous risk was estimated as an HRper SD of 1.64 (95% CI, 1.49-1.81; p < 2.0 × 10-16), which resulted in an absolute risk of 21.03% at age 80 years for individuals in the 95th percentile of PRS313. Discordant categorization into PRS deciles was observed in 248 individuals (9.3%). CONCLUSIONS: Both PRS77 and PRS313 are able to stratify individuals according to their BC risk in the Czech population. PRS313 shows better discriminatory ability. The results support the potential clinical utility of using PRS313 in individualized BC risk prediction.
Centre for Medical Genetics and Reproductive Medicine GENNET Prague Czech Republic
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Ferlay JEM, Lam F, Colombet M, et al. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer; 2022.
Mukama T, Kharazmi E, Sundquist K, Sundquist J, Brenner H, Fallah M. Familial risk of breast cancer by dynamic, accumulative, and static definitions of family history. Cancer. 2020;126(12):2837‐2848. doi:10.1002/cncr.32815
Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40(1):17‐22. doi:10.1038/ng.2007.53
Kleibl Z, Kristensen VN. Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. Breast. 2016;28:136‐144. doi:10.1016/j.breast.2016.05.006
Ghoussaini M, Fletcher O, Michailidou K, et al. Genome‐wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet. 2012;44(3):312‐318. doi:10.1038/ng.1049
Gracia‐Aznarez FJ, Fernandez V, Pita G, et al. Whole exome sequencing suggests much of non‐BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles. PLoS One. 2013;8(2):e55681. doi:10.1371/journal.pone.0055681
Easton DF, Pooley KA, Dunning AM, et al. Genome‐wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087‐1093. doi:10.1038/nature05887
Michailidou K, Hall P, Gonzalez‐Neira A, et al. Large‐scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45(4):353‐361. doi:10.1038/ng.2563
Sawyer S, Mitchell G, McKinley J, et al. A role for common genomic variants in the assessment of familial breast cancer. J Clin Oncol. 2012;30(35):4330‐4336. doi:10.1200/JCO.2012.41.7469
Mavaddat N, Pharoah PDP, Michailidou K, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst. 2015;107(5):djv036. doi:10.1093/jnci/djv036
Reeves GK, Travis RC, Green J, et al. Incidence of breast cancer and its subtypes in relation to individual and multiple low‐penetrance genetic susceptibility loci. J Am Med Assoc. 2010;304(4):426‐434. doi:10.1001/jama.2010.1042
Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002;31(1):33‐36. doi:10.1038/ng853
Pain O, Gillett AC, Austin JC, Folkersen L, Lewis CM. A tool for translating polygenic scores onto the absolute scale using summary statistics. Eur J Hum Genet. 2022;30(3):339‐348. doi:10.1038/s41431‐021‐01028‐z
Mealiffe ME, Stokowski RP, Rhees BK, Prentice RL, Pettinger M, Hinds DA. Assessment of clinical validity of a breast cancer risk model combining genetic and clinical information. J Natl Cancer Inst. 2010;102(21):1618‐1627. doi:10.1093/jnci/djq388
Evans DG, Brentnall A, Byers H, et al. The impact of a panel of 18 SNPs on breast cancer risk in women attending a UK familial screening clinic: a case‐control study. J Med Genet. 2017;54(2):111‐113. doi:10.1136/jmedgenet‐2016‐104125
Mavaddat N, Michailidou K, Dennis J, et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am J Hum Genet. 2019;104(1):21‐34. doi:10.1016/j.ajhg.2018.11.002
Brentnall AR, van Veen EM, Harkness EF, et al. A case‐control evaluation of 143 single nucleotide polymorphisms for breast cancer risk stratification with classical factors and mammographic density. Int J Cancer. 2020;146(8):2122‐2129. doi:10.1002/ijc.32541
Foretova L, Navratilova M, Svoboda M, et al. Recommendations for preventive care for women with rare genetic cause of breast and ovarian cancer. Klin Onkol. 2019;32(suppl 2):6‐13. doi:10.14735/amko2019S6
Soukupova J, Zemankova P, Lhotova K, et al. Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS‐based analysis of hereditary cancer syndromes. PLoS One. 2018;13(4):e0195761. doi:10.1371/journal.pone.0195761
Soukupova J, Zemankova P, Kleiblova P, Janatova M, Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application—design and optimization of the targeted sequencing panel for the identification of cancer susceptibility in high‐risk individuals from the Czech Republic. Klin Onkol. 2016;29(suppl 1):S46‐S54. doi:10.14735/amko2016s46
Kral J, Jelinkova S, Zemankova P, et al. Germline multigene panel testing of patients with endometrial cancer. Oncol Lett. 2023;25(6):216. doi:10.3892/ol.2023.13802
Michailidou K, Beesley J, Lindstrom S, et al. Genome‐wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet. 2015;47(4):373‐380. doi:10.1038/ng.3242
Michailidou K, Lindstrom S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92‐94. doi:10.1038/nature24284
Vachon CM, Pankratz VS, Scott CG, et al. The contributions of breast density and common genetic variation to breast cancer risk. J Natl Cancer Inst. 2015;107(5):dju397. doi:10.1093/jnci/dju397
Shieh Y, Hu D, Ma L, et al. Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res Treat. 2016;159(3):513‐525. doi:10.1007/s10549‐016‐3953‐2
Muranen TA, Greco D, Blomqvist C, et al. Genetic modifiers of CHEK2*1100delC‐associated breast cancer risk. Genet Med. 2017;19(5):599‐603. doi:10.1038/gim.2016.147
Kuchenbaecker KB, McGuffog L, Barrowdale D, et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2017;109(7):djw302. doi:10.1093/jnci/djw302
Phelan CM, Kuchenbaecker KB, Tyrer JP, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet. 2017;49(5):680‐691. doi:10.1038/ng.3826
Yang X, Leslie G, Gentry‐Maharaj A, et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J Med Genet. 2018;55(8):546‐554. doi:10.1136/jmedgenet‐2018‐105313
Lakeman IMM, Hilbers FS, Rodriguez‐Girondo M, et al. Addition of a 161‐SNP polygenic risk score to family history‐based risk prediction: impact on clinical management in non‐BRCA1/2 breast cancer families. J Med Genet. 2019;56(9):581‐589. doi:10.1136/jmedgenet‐2019‐106072
Jia G, Lu Y, Wen W, et al. Evaluating the utility of polygenic risk scores in identifying high‐risk individuals for eight common cancers. JNCI Cancer Spectr. 2020;4(3):pkaa021. doi:10.1093/jncics/pkaa021
Hilbers FS, van Hof PJ, Meijers CM, et al. Clustering of known low and moderate risk alleles rather than a novel recessive high‐risk gene in non‐BRCA1/2 sib trios affected with breast cancer. Int J Cancer. 2020;147(10):2708‐2716. doi:10.1002/ijc.33039
Zhang H, Ahearn TU, Lecarpentier J, et al. Genome‐wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype‐specific analyses. Nat Genet. 2020;52(6):572‐581. doi:10.1038/s41588‐020‐0609‐2
Jervis S, Song H, Lee A, et al. Ovarian cancer familial relative risks by tumour subtypes and by known ovarian cancer genetic susceptibility variants. J Med Genet. 2014;51(2):108‐113. doi:10.1136/jmedgenet‐2013‐102015
Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common genetic variation and breast cancer risk—past, present, and future. Cancer Epidemiol Biomarkers Prev. 2018;27(4):380‐394. doi:10.1158/1055‐9965.EPI‐17‐1144
Horackova K, Frankova S, Zemankova P, et al. Low frequency of cancer‐predisposition gene mutations in liver transplant candidates with hepatocellular carcinoma. Cancers. 2022;15(1):201. doi:10.3390/cancers15010201
Borde J, Ernst C, Wappenschmidt B, et al. Performance of breast cancer polygenic risk scores in 760 female CHEK2 germline mutation carriers. J Natl Cancer Inst. 2021;113(7):893‐899. doi:10.1093/jnci/djaa203
Lambert SA, Gil L, Jupp S, et al. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat Genet. 2021;53(4):420‐425. doi:10.1038/s41588‐021‐00783‐5
Dusek L, Muzik J, Kubasek M, Koptikova J, Zaloudik J, Vyzula R. Epidemiology of Malignant Tumours in the Czech Republic. Masaryk University; 2005. Accessed March 3, 2022. http://www.svod.cz
Antoniou AC, Goldgar DE, Andrieu N, et al. A weighted cohort approach for analysing factors modifying disease risks in carriers of high‐risk susceptibility genes. Genet Epidemiol. 2005;29(1):1‐11. doi:10.1002/gepi.20074
Zhang Z, Reinikainen J, Adeleke KA, Pieterse ME, Groothuis‐Oudshoorn CGM. Time‐varying covariates and coefficients in Cox regression models. Ann Transl Med. 2018;6(7):121. doi:10.21037/atm.2018.02.12
Antoniou AC, Beesley J, McGuffog L, et al. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res. 2010;70(23):9742‐9754. doi:10.1158/0008‐5472.CAN‐10‐1907
Duffy SW, Tabar L, Yen AM, et al. Mammography screening reduces rates of advanced and fatal breast cancers: results in 549,091 women. Cancer. 2020;126(13):2971‐2979. doi:10.1002/cncr.32859
Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022;72(6):524‐541. doi:10.3322/caac.21754
Kim G, Bahl M. Assessing risk of breast cancer: a review of risk prediction models. J Breast Imaging. 2021;3(2):144‐155. doi:10.1093/jbi/wbab001
Dite GS, MacInnis RJ, Bickerstaffe A, et al. Breast cancer risk prediction using clinical models and 77 independent risk‐associated SNPs for women aged under 50 years: Australian Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev. 2016;25(2):359‐365. doi:10.1158/1055‐9965.EPI‐15‐0838
Rudolph A, Song M, Brook MN, et al. Joint associations of a polygenic risk score and environmental risk factors for breast cancer in the Breast Cancer Association Consortium. Int J Epidemiol. 2018;47(2):526‐536. doi:10.1093/ije/dyx242
Tasa T, Puustusmaa M, Tõnisson N, Kolk B, Padrik P. Precision breast cancer screening with a polygenic risk score. medRxiv. Preprint posted online August 19, 2020. doi:10.1101/2020.08.17.20176263
Jiao Y, Truong T, Eon‐Marchais S, et al. Association and performance of polygenic risk scores for breast cancer among French women presenting or not a familial predisposition to the disease. Eur J Cancer. 2023;179:76‐86. doi:10.1016/j.ejca.2022.11.007
Barnes DR, Rookus MA, McGuffog L, et al. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genet Med. 2020;22(10):1653‐1666. doi:10.1038/s41436‐020‐0862‐x
Lakeman IMM, van den Broek AJ, Vos JAM, et al. The predictive ability of the 313 variant‐based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genet Med. 2021;23(9):1726‐1737. doi:10.1038/s41436‐021‐01198‐7
Evans DGR, van Veen EM, Harkness EF, et al. Breast cancer risk stratification in women of screening age: incremental effects of adding mammographic density, polygenic risk, and a gene panel. Genet Med. 2022;24(7):1485‐1494. doi:10.1016/j.gim.2022.03.009
Yiangou K, Mavaddat N, Dennis J, et al. Differences in polygenic score distributions in European ancestry populations: implications for breast cancer risk prediction. medRxiv. Preprint posted online February 13, 2024. doi:10.1101/2024.02.12.24302043
Lakeman IMM, Rodriguez‐Girondo MDM, Lee A, et al. Clinical applicability of the polygenic risk score for breast cancer risk prediction in familial cases. J Med Genet. 2023;60(4):327‐336. doi:10.1136/jmg‐2022‐108502
Mavaddat N, Ficorella L, Carver T, et al. Incorporating alternative polygenic risk scores into the BOADICEA breast cancer risk prediction model. Cancer Epidemiol Biomarkers Prev. 2023;32(3):422‐427. doi:10.1158/1055‐9965.EPI‐22‐0756
Hughes E, Tshiaba P, Gallagher S, et al. Development and validation of a clinical polygenic risk score to predict breast cancer risk. JCO Precis Oncol. 2020;4:585‐592. doi:10.1200/PO.19.00360
Bolze A, Cirulli ET, Hajek C, Schnell Blitstein JM, Grzymski JJ. The potential of genetics in identifying women at lower risk of breast cancer. JAMA Oncol. 2024;10(2):236‐239. doi:10.1001/jamaoncol.2023.5468
Mars N, Kerminen S, Tamlander M, et al. Comprehensive inherited risk estimation for risk‐based breast cancer screening in women. J Clin Oncol. Published online February 29, 2024. doi:10.1200/jco.23.00295