Failure of Glass Fibre-Reinforced Polypropylene Metal Laminate Subjected to Close-Range Explosion

. 2020 Sep 19 ; 12 (9) : . [epub] 20200919

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32961655

The present study investigates the effects of close-range blast loading of fibre metal laminates (FMLs) fabricated from woven glass polypropylene and aluminium alloy 2024-T3. The polypropylene layers and anodized aluminium are stacked in 3/2 layering configuration to investigate the impact energy absorbed through deformation and damage. In order to study the blast responses of FMLs, a 4-cable instrumented pendulum blast set-up is used. Effects of blast impulse and stand-off distance were examined. Investigation of the cross-section of FMLs are presented and damages such as fibre fracture, debonding, and global deformation are examined. Increasing stand-off distance from 4 to 14 mm resulted in a change of damage mode from highly localized perforation to global deformation.

Zobrazit více v PubMed

Tekalur S.A., Shivakumar K., Shukla A. Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads. Compos. Part B. 2008;39:57–65. doi: 10.1016/j.compositesb.2007.02.020. DOI

Yahya M.Y., Cantwell W.J., Langdon G.S., Nurick G.N. The Blast Behavior of Fiber Reinforced Thermoplastic Laminates. J. Compos. Mater. 2008;42:2275–2297. doi: 10.1177/0021998308094968. DOI

Kumar P., Stargel D.S., Shukla A. Effect of plate curvature on blast response of carbon composite panels. Compos. Struct. 2013;99:19–30. doi: 10.1016/j.compstruct.2012.11.036. DOI

Yahya M.Y., Cantwell W.J., Langdon G.S., Nurick G.N. The blast resistance of a woven carbon fiber-reinforced epoxy composite. J. Compos. Mater. 2011;45:789–801. doi: 10.1177/0021998310376103. DOI

Rajendran R., Lee J.M. Blast loaded plates. Mar. Struct. 2009;22:99–127. doi: 10.1016/j.marstruc.2008.04.001. DOI

Nurick G.N., Martin J.B. Deformation of thin plates subjected to impulsive loading-a review Part II: Experimental studies. Int. J. Impact Eng. 1989;8:171–186. doi: 10.1016/0734-743X(89)90015-8. DOI

Mouritz A.P. Advances in understanding the response of fibre-based polymer composites to shock waves and explosive blasts. Compos. Part A. 2019;125:105502. doi: 10.1016/j.compositesa.2019.105502. DOI

Chai G.B., Manikandan P. Low velocity impact response of fibre-metal laminates—A review. Compos. Struct. 2014;107:363–381. doi: 10.1016/j.compstruct.2013.08.003. DOI

Li X., Yahya M.Y., Nia A.B., Wang Z., Yang J., Lu G. Dynamic failure of basalt/epoxy laminates under blast—Experimental observation. Int. J. Impact Eng. 2017;102:16–26. doi: 10.1016/j.ijimpeng.2016.12.001. DOI

Alderliesten R.C., Benedictus R. Fiber/metal composite technology for future primary aircraft structures. J. Aircr. 2008;45:1182–1189. doi: 10.2514/1.33946. DOI

Vogelesang L.B., Vlot A. Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 2000;103:1–5. doi: 10.1016/S0924-0136(00)00411-8. DOI

Cortés P., Cantwell W.J. The fracture properties of a fibre-metal laminate based on magnesium alloy. Compos. Part B. 2005;37:163–170. doi: 10.1016/j.compositesb.2005.06.002. DOI

Cortés P., Cantwell W.J. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates. Compos. Sci. Technol. 2006;66:2306–2316. doi: 10.1016/j.compscitech.2005.11.031. DOI

Sinmazçelik T., Avcu E., Bora M.Ö., Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 2011;32:3671–3685. doi: 10.1016/j.matdes.2011.03.011. DOI

Vlot A. Impact loading on fibre metal laminates. Int. J. Impact Eng. 1996;18:291–307. doi: 10.1016/0734-743X(96)89050-6. DOI

Sadighi M., Alderliesten R.C., Benedictus R. Impact resistance of fiber-metal laminates: A review. Int. J. Impact Eng. 2012;49:77–90. doi: 10.1016/j.ijimpeng.2012.05.006. DOI

Carrillo J.G., Cantwell W.J. Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite. Mech. Mater. 2009;41:828–838. doi: 10.1016/j.mechmat.2009.03.002. DOI

Holbery J., Houston D. Natural-fiber-reinforced polymer composites in automotive applications. JOM. 2006;58:80–86. doi: 10.1007/s11837-006-0234-2. DOI

Rothe F., Dér A., Kabala P., Thiede S., Beuscher J., Herrmann C., Dröder K. Economic evaluation of alternative process chains for the large-scale manufacturing of metal-fibre laminates. Procedia CIRP. 2019;85:13–19. doi: 10.1016/j.procir.2019.09.027. DOI

Langdon G.S., Lemanski S.L., Nurick G.N., Simmons M.C., Cantwell W.J., Schleyer G.K. Behaviour of fibre-metal laminates subjected to localised blast loading: Part I-Experimental observations. Int. J. Impact Eng. 2007;34:1202–1222. doi: 10.1016/j.ijimpeng.2006.05.008. DOI

Langdon G.S., Cantwell W.J., Nurick G.N. The blast response of novel thermoplastic-based fibre-metal laminates—Some preliminary results and observations. Compos. Sci. Technol. 2005;65:861–872. doi: 10.1016/j.compscitech.2004.09.025. DOI

Langdon G.S., Nurick G.N., Cantwell W.J. The response of fibre metal laminate panels subjected to uniformly distributed blast loading. Eur. J. Mech. A/Solids. 2008;27:107–115. doi: 10.1016/j.euromechsol.2007.09.003. DOI

Lemanski S.L., Nurick G.N., Langdon G.S., Simmons M.S., Cantwell W.J., Schleyer G.K. Understanding the behaviour of fibre metal laminates subjected to localised blast loading. Compos. Struct. 2006;76:82–87. doi: 10.1016/j.compstruct.2006.06.012. DOI

Ma X., Li X., Li S., Li R., Wang Z., Wu G. Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins. Int. J. Impact Eng. 2019;123:126–139. doi: 10.1016/j.ijimpeng.2018.10.003. DOI

Sitnikova E., Guan Z.W., Schleyer G.K., Cantwell W.J. Modelling of perforation failure in fibre metal laminates subjected to high impulsive blast loading. Int. J. Solids Struct. 2014;51:3135–3146. doi: 10.1016/j.ijsolstr.2014.05.010. DOI

Abdi B., Koloor S.S.R., Abdullah M.R., Amran A., bin Yahya M.Y. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012;229:766–770. doi: 10.4028/www.scientific.net/AMM.229-231.766. DOI

Karagiozova D., Langdon G.S., Nurick G.N., Yuen S.C.K. Simulation of the response of fibre-metal laminates to localised blast loading. Int. J. Impact Eng. 2010;37:766–782. doi: 10.1016/j.ijimpeng.2009.04.001. DOI

Vo T.P., Guan Z.W., Cantwell W.J., Schleyer G.K. Modelling of the low-impulse blast behaviour of fibre-metal laminates based on different aluminium alloys. Compos. Part B. 2013;44:141–151. doi: 10.1016/j.compositesb.2012.06.013. DOI

Vo T.P., Guan Z.W., Cantwell W.J., Schleyer G.K. Low-impulse blast behaviour of fibre-metal laminates. Compos. Struct. 2012;94:954–965. doi: 10.1016/j.compstruct.2011.10.027. DOI

Brown K.A., Brooks R., Warrior N.A. The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Compos. Sci. Technol. 2010;70:272–283. doi: 10.1016/j.compscitech.2009.10.018. DOI

Lemanski S.L., Nurick G.N., Langdon G.S., Simmons M.C., Cantwell W.J., Schleyer G.K. Behaviour of fibre metal laminates subjected to localised blast loading-Part II: Quantitative analysis. Int. J. Impact Eng. 2007;34:1223–1245. doi: 10.1016/j.ijimpeng.2006.05.009. DOI

Langdon G.S., Nurick G.N., Lemanski S.L., Simmons M.C., Cantwell W.J., Schleyer G.K. Failure characterisation of blast-loaded fibre-metal laminate panels based on aluminium and glass-fibre reinforced polypropylene. Compos. Sci. Technol. 2007;67:1385–1405. doi: 10.1016/j.compscitech.2006.09.010. DOI

Bonorchis D., Nurick G.N. The influence of boundary conditions on the loading of rectangular plates subjected to localised blast loading-importance in numerical simulations. Int. J. Impact Eng. 2009;36:40–52. doi: 10.1016/j.ijimpeng.2008.03.003. DOI

Jing L., Wang Z., Zhao L. Measurement of Impulse Acted on a Structure Subjected to Blast Loading. J. Exp. Mech. 2009;24:151–156.

Langdon G.S., Cantwell W.J., Nurick G.N. Localised blast loading of fibre-metal laminates with a polyamide matrix. Compos. Part B. 2007;38:902–913. doi: 10.1016/j.compositesb.2006.11.005. DOI

Li W., Huang G., Bai Y., Dong Y., Feng S. Dynamic response of spherical sandwich shells with metallic foam core under external air blast loading—Numerical simulation. Compos. Struct. 2014;116:612–625. doi: 10.1016/j.compstruct.2014.05.038. DOI

Vannucci P., Masi F., Stefanou I. A Comparative Study on the Effects of Blast Actions on a Monumental Structure. HAL; Paris, France: 2017.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review

. 2021 Oct 02 ; 13 (19) : . [epub] 20211002

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...