Failure of Glass Fibre-Reinforced Polypropylene Metal Laminate Subjected to Close-Range Explosion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32961655
PubMed Central
PMC7570038
DOI
10.3390/polym12092139
PII: polym12092139
Knihovny.cz E-zdroje
- Klíčová slova
- blast, composite, failure mode and deformation, hybrid structure, impulse,
- Publikační typ
- časopisecké články MeSH
The present study investigates the effects of close-range blast loading of fibre metal laminates (FMLs) fabricated from woven glass polypropylene and aluminium alloy 2024-T3. The polypropylene layers and anodized aluminium are stacked in 3/2 layering configuration to investigate the impact energy absorbed through deformation and damage. In order to study the blast responses of FMLs, a 4-cable instrumented pendulum blast set-up is used. Effects of blast impulse and stand-off distance were examined. Investigation of the cross-section of FMLs are presented and damages such as fibre fracture, debonding, and global deformation are examined. Increasing stand-off distance from 4 to 14 mm resulted in a change of damage mode from highly localized perforation to global deformation.
Zobrazit více v PubMed
Tekalur S.A., Shivakumar K., Shukla A. Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads. Compos. Part B. 2008;39:57–65. doi: 10.1016/j.compositesb.2007.02.020. DOI
Yahya M.Y., Cantwell W.J., Langdon G.S., Nurick G.N. The Blast Behavior of Fiber Reinforced Thermoplastic Laminates. J. Compos. Mater. 2008;42:2275–2297. doi: 10.1177/0021998308094968. DOI
Kumar P., Stargel D.S., Shukla A. Effect of plate curvature on blast response of carbon composite panels. Compos. Struct. 2013;99:19–30. doi: 10.1016/j.compstruct.2012.11.036. DOI
Yahya M.Y., Cantwell W.J., Langdon G.S., Nurick G.N. The blast resistance of a woven carbon fiber-reinforced epoxy composite. J. Compos. Mater. 2011;45:789–801. doi: 10.1177/0021998310376103. DOI
Rajendran R., Lee J.M. Blast loaded plates. Mar. Struct. 2009;22:99–127. doi: 10.1016/j.marstruc.2008.04.001. DOI
Nurick G.N., Martin J.B. Deformation of thin plates subjected to impulsive loading-a review Part II: Experimental studies. Int. J. Impact Eng. 1989;8:171–186. doi: 10.1016/0734-743X(89)90015-8. DOI
Mouritz A.P. Advances in understanding the response of fibre-based polymer composites to shock waves and explosive blasts. Compos. Part A. 2019;125:105502. doi: 10.1016/j.compositesa.2019.105502. DOI
Chai G.B., Manikandan P. Low velocity impact response of fibre-metal laminates—A review. Compos. Struct. 2014;107:363–381. doi: 10.1016/j.compstruct.2013.08.003. DOI
Li X., Yahya M.Y., Nia A.B., Wang Z., Yang J., Lu G. Dynamic failure of basalt/epoxy laminates under blast—Experimental observation. Int. J. Impact Eng. 2017;102:16–26. doi: 10.1016/j.ijimpeng.2016.12.001. DOI
Alderliesten R.C., Benedictus R. Fiber/metal composite technology for future primary aircraft structures. J. Aircr. 2008;45:1182–1189. doi: 10.2514/1.33946. DOI
Vogelesang L.B., Vlot A. Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 2000;103:1–5. doi: 10.1016/S0924-0136(00)00411-8. DOI
Cortés P., Cantwell W.J. The fracture properties of a fibre-metal laminate based on magnesium alloy. Compos. Part B. 2005;37:163–170. doi: 10.1016/j.compositesb.2005.06.002. DOI
Cortés P., Cantwell W.J. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates. Compos. Sci. Technol. 2006;66:2306–2316. doi: 10.1016/j.compscitech.2005.11.031. DOI
Sinmazçelik T., Avcu E., Bora M.Ö., Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 2011;32:3671–3685. doi: 10.1016/j.matdes.2011.03.011. DOI
Vlot A. Impact loading on fibre metal laminates. Int. J. Impact Eng. 1996;18:291–307. doi: 10.1016/0734-743X(96)89050-6. DOI
Sadighi M., Alderliesten R.C., Benedictus R. Impact resistance of fiber-metal laminates: A review. Int. J. Impact Eng. 2012;49:77–90. doi: 10.1016/j.ijimpeng.2012.05.006. DOI
Carrillo J.G., Cantwell W.J. Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite. Mech. Mater. 2009;41:828–838. doi: 10.1016/j.mechmat.2009.03.002. DOI
Holbery J., Houston D. Natural-fiber-reinforced polymer composites in automotive applications. JOM. 2006;58:80–86. doi: 10.1007/s11837-006-0234-2. DOI
Rothe F., Dér A., Kabala P., Thiede S., Beuscher J., Herrmann C., Dröder K. Economic evaluation of alternative process chains for the large-scale manufacturing of metal-fibre laminates. Procedia CIRP. 2019;85:13–19. doi: 10.1016/j.procir.2019.09.027. DOI
Langdon G.S., Lemanski S.L., Nurick G.N., Simmons M.C., Cantwell W.J., Schleyer G.K. Behaviour of fibre-metal laminates subjected to localised blast loading: Part I-Experimental observations. Int. J. Impact Eng. 2007;34:1202–1222. doi: 10.1016/j.ijimpeng.2006.05.008. DOI
Langdon G.S., Cantwell W.J., Nurick G.N. The blast response of novel thermoplastic-based fibre-metal laminates—Some preliminary results and observations. Compos. Sci. Technol. 2005;65:861–872. doi: 10.1016/j.compscitech.2004.09.025. DOI
Langdon G.S., Nurick G.N., Cantwell W.J. The response of fibre metal laminate panels subjected to uniformly distributed blast loading. Eur. J. Mech. A/Solids. 2008;27:107–115. doi: 10.1016/j.euromechsol.2007.09.003. DOI
Lemanski S.L., Nurick G.N., Langdon G.S., Simmons M.S., Cantwell W.J., Schleyer G.K. Understanding the behaviour of fibre metal laminates subjected to localised blast loading. Compos. Struct. 2006;76:82–87. doi: 10.1016/j.compstruct.2006.06.012. DOI
Ma X., Li X., Li S., Li R., Wang Z., Wu G. Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins. Int. J. Impact Eng. 2019;123:126–139. doi: 10.1016/j.ijimpeng.2018.10.003. DOI
Sitnikova E., Guan Z.W., Schleyer G.K., Cantwell W.J. Modelling of perforation failure in fibre metal laminates subjected to high impulsive blast loading. Int. J. Solids Struct. 2014;51:3135–3146. doi: 10.1016/j.ijsolstr.2014.05.010. DOI
Abdi B., Koloor S.S.R., Abdullah M.R., Amran A., bin Yahya M.Y. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012;229:766–770. doi: 10.4028/www.scientific.net/AMM.229-231.766. DOI
Karagiozova D., Langdon G.S., Nurick G.N., Yuen S.C.K. Simulation of the response of fibre-metal laminates to localised blast loading. Int. J. Impact Eng. 2010;37:766–782. doi: 10.1016/j.ijimpeng.2009.04.001. DOI
Vo T.P., Guan Z.W., Cantwell W.J., Schleyer G.K. Modelling of the low-impulse blast behaviour of fibre-metal laminates based on different aluminium alloys. Compos. Part B. 2013;44:141–151. doi: 10.1016/j.compositesb.2012.06.013. DOI
Vo T.P., Guan Z.W., Cantwell W.J., Schleyer G.K. Low-impulse blast behaviour of fibre-metal laminates. Compos. Struct. 2012;94:954–965. doi: 10.1016/j.compstruct.2011.10.027. DOI
Brown K.A., Brooks R., Warrior N.A. The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Compos. Sci. Technol. 2010;70:272–283. doi: 10.1016/j.compscitech.2009.10.018. DOI
Lemanski S.L., Nurick G.N., Langdon G.S., Simmons M.C., Cantwell W.J., Schleyer G.K. Behaviour of fibre metal laminates subjected to localised blast loading-Part II: Quantitative analysis. Int. J. Impact Eng. 2007;34:1223–1245. doi: 10.1016/j.ijimpeng.2006.05.009. DOI
Langdon G.S., Nurick G.N., Lemanski S.L., Simmons M.C., Cantwell W.J., Schleyer G.K. Failure characterisation of blast-loaded fibre-metal laminate panels based on aluminium and glass-fibre reinforced polypropylene. Compos. Sci. Technol. 2007;67:1385–1405. doi: 10.1016/j.compscitech.2006.09.010. DOI
Bonorchis D., Nurick G.N. The influence of boundary conditions on the loading of rectangular plates subjected to localised blast loading-importance in numerical simulations. Int. J. Impact Eng. 2009;36:40–52. doi: 10.1016/j.ijimpeng.2008.03.003. DOI
Jing L., Wang Z., Zhao L. Measurement of Impulse Acted on a Structure Subjected to Blast Loading. J. Exp. Mech. 2009;24:151–156.
Langdon G.S., Cantwell W.J., Nurick G.N. Localised blast loading of fibre-metal laminates with a polyamide matrix. Compos. Part B. 2007;38:902–913. doi: 10.1016/j.compositesb.2006.11.005. DOI
Li W., Huang G., Bai Y., Dong Y., Feng S. Dynamic response of spherical sandwich shells with metallic foam core under external air blast loading—Numerical simulation. Compos. Struct. 2014;116:612–625. doi: 10.1016/j.compstruct.2014.05.038. DOI
Vannucci P., Masi F., Stefanou I. A Comparative Study on the Effects of Blast Actions on a Monumental Structure. HAL; Paris, France: 2017.