hybrid structure
Dotaz
Zobrazit nápovědu
OBJECTIVE: Transgenic mice with fluorescent protein (FP) reporters take full advantage of new in vivo imaging technologies. Therefore, we generated a TRPC5- and a TRPA1-reporter mouse based on FP C-terminal fusion, providing us with better alternatives for studying the physiology, interaction and coeffectors of these two TRP channels at the cellular and tissue level. METHODS: We generated transgenic constructs of the murine TRPC5- and TRPA1-gene with a 3*GGGGS linker and C-terminal fusion to mCherry and mTagBFP, respectively. We microinjected zygotes to generate reporter mice. Reporter mice were examined for visible fluorescence in trigeminal ganglia with two-photon microscopy, immunohistochemistry and calcium imaging. RESULTS: Both TRPC5-mCherry and TRPA1-mTagBFP knock-in mouse models were successful at the DNA and RNA level. However, at the protein level, TRPC5 resulted in no mCherry fluorescence. In contrast, sensory neurons derived from the TRPA1-reporter mice exhibited visible mTag-BFP fluorescence, although TRPA1 had apparently lost its ion channel function. CONCLUSIONS: Creating transgenic mice with a TRP channel tagged at the C-terminus with a FP requires detailed investigation of the structural and functional consequences in a given cellular context and fine-tuning the design of specific constructs for a given TRP channel subtype. Different degrees of functional impairment of TRPA1 and TRPC5 constructs suggest a specific importance of the distal C-terminus for the regulation of these two channels in trigeminal neurons.
- MeSH
- červený fluorescenční protein MeSH
- ganglion trigeminale metabolismus MeSH
- genový knockin * MeSH
- kationtové kanály TRPC * genetika metabolismus MeSH
- kationtový kanál TRPA1 * genetika metabolismus MeSH
- luminescentní proteiny * genetika metabolismus MeSH
- myši transgenní * MeSH
- myši MeSH
- rekombinantní fúzní proteiny metabolismus genetika MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77T, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77T is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704T with sequence similarity of 95.5%. The main fatty acids were iso-C15:1 G, iso-C15:0, and iso-C17:0 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77T was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77T and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77T with the strain of F. nanhaiensis SM1704T was 16.8%. The genome of the strain DF-77T revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77T (= KCTC 72791T = NBRC 114251T).
- MeSH
- DNA bakterií genetika chemie MeSH
- Flavobacteriaceae * klasifikace izolace a purifikace genetika MeSH
- fosfolipidy analýza MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- hybridizace nukleových kyselin MeSH
- mastné kyseliny analýza MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- techniky typizace bakterií MeSH
- vitamin K 2 analýza analogy a deriváty MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Japonsko MeSH
PURPOSE: Minimally invasive surgery (MIS) in neonates and infants presents technical challenges and is still unfamiliar to many paediatrics surgeons. This study aims to identify currently available simulators for neonatal/infant MIS training, to assess their validity, level of evidence, and related recommendations. METHODS: The review followed PRISMA guidelines and was registered in PROSPERO (CRD420250581050). Electronic search limited to English articles was performed through PubMed/MEDLINE, SCOPUS, Web of Science and Cochrane Database from January 2010 to June 2024. RESULTS: Out of 1084 identified records, 72 studies met the inclusion criteria and were analysed across general, gastrointestinal, thoracic, and urological MIS specialties. Recent efforts have led to the development of 3D-printed, animal-based, and hybrid models several of which showed high fidelity, skill differentiation, and educational value. Despite promising results, no universal MIS training model exists for neonate/infant patients, highlighting the need for structured, proficiency-based curricula. Overall, studies demonstrated moderate levels of evidence and recommendation, supporting integration of cost-effective simulation into paediatrics MIS training CONCLUSION: This systematic review highlights the need for validated, standardized simulation models and proficiency-based curricula to optimize neonate and infant MIS training and guide future research toward improving model fidelity, accessibility, and long-term educational outcomes.
Allodiploid hybrid species, Aspergillus latus, belonging to section Nidulantes, is a hybrid of A. spinulosporus and an unknown species closely related to A. quadrilineatus and A. sublatus. This hybrid has often been misidentified as the species in section Nidulantes, such as A. nidulans, A. spinulosporus, A. sublatus, or other cryptic species. Aspergillus latus has not been reported in Japan as well as Asia so far. In this study, we screened 23 clinical strains identified as A. spinulosporus isolated in Japan from 2012 to 2023 and found seven A. latus strains. To characterize the A. latus strains, we conducted comprehensive phenotyping including morphological observation, whole genome sequences, and phylogenetic analysis based on calmodulin (CaM) gene. In addition, we conducted antifungal susceptibility testing for A. latus strains. As a result, the morphological characters of A. latus were more similar to those of A. spinulosporus compared to A. sublatus. However, the ascospore of A. latus differed from that of A. spinulosporus. Phylogenetic analysis revealed that different CaM alleles from the same isolate clustered separately with A. spinulosporus and A. sublatus, consistent with its hybrid origin. Furthermore, A. latus strains showed reduced susceptibility to caspofungin and amphotericin B compared to A. spinulosporus, while they were susceptible to azoles. Our results suggest that A. latus has been a causative pathogen of aspergillosis in Japan since 2013.
- MeSH
- antifungální látky farmakologie MeSH
- Aspergillus * genetika klasifikace izolace a purifikace účinky léků MeSH
- aspergilóza * mikrobiologie epidemiologie MeSH
- fylogeneze MeSH
- kalmodulin genetika MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Japonsko MeSH
UNLABELLED: Despite significant advances in knowledge and the development of guidelines, the management of hypoplastic left heart syndrome (HLHS) remains highly variable. A structured questionnaire was circulated across European Association of Paediatric & Congenital Cardiology (AEPC) affiliated centres. The aims were to evaluate standards in pre-operative assessment, types of surgery, follow-up and medical practices in children with HLHS. Thirty-one centres from 20 countries completed the survey. Delivery of babies with HLHS occurred in co-located maternity hospitals in 74% of centres; 29% were planned for spontaneous onset of labour, while 54% decided on a case-by-case basis. The preferred initial palliation was a right ventricle-pulmonary artery conduit in 55% of cases, modified Blalock-Thomas Taussig shunt (mBTTS) in 35%, and hybrid in 15% of cases. Timing for Glenn varied from 3 to 6 months of age and preoperative examination varied greatly: 65% performed cardiac catheterization and only 19% performed cardiac magnetic resonance. Stage III palliation was performed at a highly variable interval (2-6 years of age), nearly always employing an extracardiac conduit. Fenestration was routinely performed in 61% and reserved for borderline cases in 39%. All the centers adopted warfarin for the first 3-12 months after Fontan completion, and continued if a fenestration was present, while in non-fenestrated aspirin was left by most centers (e.g. 68%). However, there was a high disparity in the use of heart failure medications (e.g. in interstage I-II 35% use ACE-inhibitors, and only 26% digoxin). Follow-up practice also varied widely with only 60% employing specific protocols. CONCLUSION: This first multi-centre European survey from 31 centres from 20 different European countries highlighted a high practice variation in HLHS management across all the stages of Single Ventricle (Fontan) palliation. Major variations pertained to pre- and post-surgical investigations, surgical strategy for stage I and III, medical treatment regimens, and follow-up programs. WHAT IS KNOWN: • Hypoplastic left heart syndrome (HLHS) remains one of the most complex and challenging congenital cardiac defects to manage. • Investigating the management of children with HLHS across different European centres can facilitate study of the most effective management strategies. WHAT IS NEW: • Significant variation in HLHS management were reported in relation to pre- and post-surgical examinations, surgical strategy at stage I and III, medical treatment regimens, and follow-up programs. • Greater standardisation of imaging and diagnostic evaluation, medical treatment and follow-up surveillance may improve outcomes for these vulnerable patients and warrants further study.
- MeSH
- dítě MeSH
- kojenec MeSH
- lékařská praxe - způsoby provádění * statistika a číselné údaje MeSH
- lidé MeSH
- novorozenec MeSH
- paliativní péče MeSH
- předškolní dítě MeSH
- průzkumy a dotazníky MeSH
- syndrom hypoplazie levého srdce * chirurgie diagnóza terapie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Lipopolysaccharide (LPS)-induced inflammation of lung tissues triggers irreversible alterations in the lung parenchyma, leading to fibrosis and pulmonary dysfunction. While the molecular and cellular responses of immune and connective tissue cells in the lungs are well characterized, the specific epithelial response remains unclear due to the lack of representative cell models. Recently, we introduced human embryonic stem cell-derived expandable lung epithelial (ELEP) cells as a novel model for studying lung injury and regeneration. METHODS: ELEPs were derived from the CCTL 14 human embryonic stem cell line through activin A-mediated endoderm specification, followed by further induction toward pulmonary epithelium using FGF2 and EGF. ELEPs exhibit a high proliferation rate and express key structural and molecular markers of alveolar progenitors, such as NKX2-1. The effects of Escherichia coli LPS serotype O55:B5 on the phenotype and molecular signaling of ELEPs were analyzed using viability and migration assays, mRNA and protein levels were determined by qRT-PCR, western blotting, and immunofluorescent microscopy. RESULTS: We demonstrated that purified LPS induces features of a hybrid epithelial-to-mesenchymal transition in pluripotent stem cell-derived ELEPs, triggers the unfolded protein response, and upregulates intracellular β-catenin level through retention of E-cadherin within the endoplasmic reticulum. CONCLUSIONS: Human embryonic stem cell-derived ELEPs provide a biologically relevant, non-cancerous lung cell model to investigate molecular responses to inflammatory stimuli and address epithelial plasticity. This approach offers novel insights into the fine molecular processes underlying lung injury and repair.
- MeSH
- buněčné linie MeSH
- CD antigeny metabolismus MeSH
- endoplazmatické retikulum * metabolismus účinky léků MeSH
- epitelo-mezenchymální tranzice * účinky léků MeSH
- epitelové buňky * účinky léků metabolismus cytologie MeSH
- kadheriny * metabolismus MeSH
- lidé MeSH
- lidské embryonální kmenové buňky * cytologie MeSH
- lipopolysacharidy * farmakologie MeSH
- plíce * cytologie MeSH
- tyreoidální jaderný faktor 1 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The inherent carbohydrate-binding specificities of human galectins can serve as recognition elements in both biotechnological and biomedical applications. The combination of the carbohydrate-recognition domain (CRD) of galectins fused to peptides or proteins for purification, immobilization, and imaging enables multifunctional utilization within a single protein. We present here a library of color-coded galectin fusion proteins that incorporate a His6-tag, a fluorescent protein, and a SpyCatcher or SpyTag unit to enable immobilization procedures. These galectin fusion proteins exhibit similar binding properties to the non-fused galectins with micromolar apparent binding affinities. N- and C-terminal fusion partners do not interfere with the SpyCatcher/SpyTag immobilization. By applying SpyCatcher/SpyTag-mediated SC-ST-Gal-3 conjugates, we show the stepwise formation of a three-layer ECM-like structure in vitro. Additionally, we demonstrate the SpyCatcher/SpyTag-mediated immobilization of galectins in microgels, which can serve as a transport platform for localized targeting applications. The proof of concept is provided by the galectin-mediated binding of microgels to colorectal cancer cells.
- MeSH
- barva MeSH
- biokompatibilní materiály chemie MeSH
- galektiny * chemie metabolismus MeSH
- gely chemie MeSH
- lidé MeSH
- rekombinantní fúzní proteiny * chemie metabolismus genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Structural, architectural, contractile, or electrophysiological alterations may occur in the left atrium (LA). The concept of LA cardiopathy is supported by accumulating scientific evidence demonstrating that LA remodelling has become a cornerstone diagnostic and prognostic marker. The structure and the function of the LA and left atrial appendage (LAA), which is an integral part of the LA, are key elements for a better understanding of multiple clinical conditions, most notably atrial fibrillation, cardioembolism, heart failure, and mitral valve diseases. Rational use of various imaging modalities is key to obtain the relevant clinical information. Accordingly, this clinical consensus document from the European Association of Cardiovascular Imaging, in collaboration with the European Heart Rhythm Association, provides comprehensive, up-to-date, and evidence-based guidance to cardiologists and cardiac imagers for the best practice of imaging LA and LAA for the diagnosis, management, and prognostication of the patients.
- MeSH
- echokardiografie metody MeSH
- fibrilace síní diagnostické zobrazování MeSH
- kardiologické zobrazovací techniky MeSH
- kardiologie MeSH
- konsensus * MeSH
- lidé MeSH
- multimodální zobrazování * metody MeSH
- prognóza MeSH
- síňové ouško * diagnostické zobrazování MeSH
- společnosti lékařské * MeSH
- srdeční síně * diagnostické zobrazování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- směrnice pro lékařskou praxi MeSH
- Geografické názvy
- Evropa MeSH
AIM: This work explores the synthesis of new bi-heterocyclic hybrid compounds based on quinoline ring and investigates their potential as anticancer agents. MATERIALS & METHODS: The novel fused quinoline-thiazolo[3,2-a] benzimidazole-3(2 h)one hybrids were prepared by regioselective nucleophilic ring opening of the corresponding quinolinyl-oxiranes. In vitro cytotoxic activity was evaluated against human lung (A549) and gastric (AGS) cancer cell lines. RESULTS: Global results showed that all tested compounds have promising inhibitory properties. Compounds 17 and 18 bearing two methoxy groups on the quinoline ring have exhibited remarkable and interesting activities. The investigation of the cell death process showed that these compounds activated a caspase-dependent apoptosis pathway. Results were further supported by molecular docking studies. CONCLUSION: Both compounds exhibited good drug-like characteristics, which make them promising drug candidates.
- MeSH
- apoptóza * účinky léků MeSH
- benzimidazoly * farmakologie chemie chemická syntéza MeSH
- chinoliny * chemie farmakologie chemická syntéza MeSH
- kaspasy * metabolismus MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie chemie chemická syntéza MeSH
- screeningové testy protinádorových léčiv MeSH
- simulace molekulového dockingu * MeSH
- thiazoly chemie farmakologie chemická syntéza MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Gold nanoparticles represent nanosized colloidal entities with high relevance for both basic and applied research. When gold nanoparticles are functionalized with polymer-molecule ligands, hybrid nanoparticles emerge whose interactions with the environment are controlled by the polymer coating layer: Colloidal stability and structure formation on the single particle level as well as at the supracolloidal scale can be enabled and engineered by tailoring the composition and architecture of this polymer coating. These possibilities in controlling structure formation may lead to synergistic and/or emergent functional properties of such hybrid colloidal systems. Eventually, the responsivity of the polymer coating to external triggers also enables the formation of hybrid supracolloidal systems with specific dynamic properties. This review provides an overview of fundamentals and recent developments in this vibrant domain of materials science.