Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2020/004
Tomas Bata University in Zlin
PubMed
32785020
PubMed Central
PMC7465910
DOI
10.3390/polym12081785
PII: polym12081785
Knihovny.cz E-zdroje
- Klíčová slova
- DMA, TMA, basalt fiber, creep recovery, epoxy composite, glass transition temperature, stress-relaxation,
- Publikační typ
- časopisecké články MeSH
In this study, basalt fiber-reinforced polymer (BFRP) composites with epoxy matrix, 20 layers, and volume fraction of fibers Vf = 53.66%, were prepared by a hand lay-up compression molding combined method. The fabric of the basalt fibers is in twill 2/2 weave. Through dynamic mechanical analysis (DMA), their viscoelastic behavior at elevated temperatures and in various frequencies was explored, whereas thermomechanical analysis (TMA) took part in terms of creep recovery and stress-relaxation tests. Moreover, the glass transition temperature (Tg) of the BFRP composites was determined through the peak of the tanδ curves while the decomposition of the BFRP composites and basalt fibers, in air or nitrogen atmosphere, was explored through thermogravimetric analysis (TGA). The mechanical behavior of the BFRP composites was investigated by tensile and three-point bending experiments. The results showed that as the frequency is raised, the BFRP composites can achieve slightly higher Tg while, under the same circumstances, the storage modulus curve obtains a less steep decrease in the middle transition region. Moreover, the hand lay-up compression molding hybrid technique can be characterized as efficient for the preparation of polymer matrix composites with a relatively high Vf of over 50%. Remarkably, through the TGA experiments, the excellent thermal resistance of the basalt fibers, in the temperature range 30-900 °C, was revealed.
Zobrazit více v PubMed
Martin A. Fiber Reinforced Polymers. IntechOpen; Rijeka, Croatia: 2013. [(accessed on 1 May 2020)]. Introduction of Fibre-Reinforced Polymers—Polymers and Composites: Concepts, Properties and Processes. Available online: https://www.intechopen.com/books/fiber-reinforced-polymers-the-technology-applied-for-concrete-repair/introduction-of-fibre-reinforced-polymers-polymers-and-composites-concepts-properties-and-processes. DOI
Cao S., Wu Z. Tensile Properties of FRP Composites at Elevated and High Temperatures. J. Appl. Mech. 2008;11:963–970. doi: 10.2208/journalam.11.963. DOI
Vikas G., Sudheer M. A Review on Properties of Basalt Fiber Reinforced Polymer Composites. Am. J. Mater. Sci. 2017;7:156–165. doi: 10.5923/j.materials.20170705.07. DOI
Zhang Y., Yu C., Chu P.K., Lv F., Zhang C., Ji J., Zhang R., Wang H. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites. Mater. Chem. Phys. 2012;133:845–849. doi: 10.1016/j.matchemphys.2012.01.105. DOI
Maxineasa S.G., Taranu N. Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures. Woodhead Publishing; Sawston Cambridge, UK: 2018. Life cycle analysis of strengthening concrete beams with FRP; pp. 673–721. ISBN 9780081021811. DOI
Fiore V., di Bella G., Valenza A. Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011;32:2091–2099. doi: 10.1016/j.matdes.2010.11.043. ISSN 0261-3069. DOI
Tamas D., Tibor C. Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. Text. Res. J. 2009;79:645–651. doi: 10.1177/0040517508095597. DOI
Mallick P.K. In: Fiber-Reinforced Composites: Materials Manufacturing and Design. 3rd ed. Mallick P.K., editor. CRC Press; Boca Raton, FL, USA: 2007.
Saba N., Jawaid M., Alothman O.Y., Paridah M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016;106:149–159. doi: 10.1016/j.conbuildmat.2015.12.075. DOI
Papanicolaou G.C., Zaoutsos S.P. Creep and Fatigue in Polymer Matrix Composites. Woodhead Publishing; Sawston Cambridge, UK: 2011. Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites; pp. 3–47. DOI
Tang T., Felicelli S.D. Computational evaluation of effective stress relaxation behavior of polymer composites. Int. J. Eng. Sci. 2015;90:76–85. doi: 10.1016/j.ijengsci.2015.02.003. DOI
Epaarachchi J., Guedes R., Eparachchi J.A. The effect of viscoelasticity on fatigue behaviour of polymer matrix composites. In: Guedes R.M., editor. Creep and Fatigue in Polymer Matrix Composites. Woodhead Publishing; Sawston Cambridge, UK: 2011. pp. 4913–4925.
Roy S., Reddy J. Computational Modeling of Polymer Composites: A Study of Creep and Environmental Effects. CRC Press; Boca Raton, FL, USA: 2013.
Daver F., Kajtaz M., Brandt M., Shanks R.A. Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing. Polymers. 2016;8:437. doi: 10.3390/polym8120437. PubMed DOI PMC
Zhang H., Yao Y., Zhu D., Mobasher B., Huang L. Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures. Polym. Test. 2016;51:29–39. doi: 10.1016/j.polymertesting.2016.02.006. PubMed DOI PMC
Colombo C., Vergani L., Burman M. Static and fatigue characterisation of new basalt fibre reinforced composites. Compos. Struct. 2012;94:1165–1174. doi: 10.1016/j.compstruct.2011.10.007. DOI
Bhat T., Kandare E., Gibson A., Di Modica P., Mouritz A. Compressive softening and failure of basalt fibre composites in fire: Modelling and experimentation. Compos. Struct. 2017;165:15–24. doi: 10.1016/j.compstruct.2017.01.003. DOI
Lu Z., Xian G., Li H. Effects of elevated temperatures on the mechanical properties of basalt fibers and BFRP plates. Constr. Build. Mater. 2016;127:1029–1036. doi: 10.1016/j.conbuildmat.2015.10.207. DOI
LoPresto V., Leone C., De Iorio I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B. 2011;42:717–723. doi: 10.1016/j.compositesb.2011.01.030. DOI
Manikandan V., Jappes J.W., Kumar S.S., Amuthakkannan P. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos. Part B. 2012;43:812–818. doi: 10.1016/j.compositesb.2011.11.009. DOI
Wang Z., Yang Z., Yang Y., Xian G. Flexural fatigue behavior of a pultruded basalt fiber reinforced epoxy plate subjected to elevated temperatures exposure. Polym. Compos. 2016;39:1731–1741. doi: 10.1002/pc.24124. DOI
Shishevan F.A., Akbulut H., Mohtadi-Bonab M.A. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites. J. Mater. Eng. Perform. 2017;26:2890–2900. doi: 10.1007/s11665-017-2728-1. DOI
Carmisciano S., De Rosa I.M., Sarasini F., Tamburrano A., Valente M. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater. Des. 2011;32:337–342. doi: 10.1016/j.matdes.2010.06.042. DOI
Amuthakkannan P., Manikandan V. Free vibration and dynamic mechanical properties of basalt fiber reinforced polymer composites. [(accessed on 30 September 2018)];Indian J. Eng. Mater. Sci. 2018 25:265–270. Available online: http://nopr.niscair.res.in/handle/123456789/44932.
Wagner M. Thermal Analysis in Practice-Fundamental Aspects. Carl Hanser Verlag GmbH Co KG; Munich, Germany: 2018.
Zhang D., He M., Qin S., Yu J., Guo J., Xu G. Study on dynamic mechanical, thermal, and mechanical properties of long glass fiber reinforced thermoplastic polyurethane/poly(butylene terephthalate) composites. Polym. Compos. 2018;39:63–72. doi: 10.1002/pc.23902. DOI
Takase K., Watanabe I., Kurogi T., Murata H. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins. Dent. Mater. J. 2015;34:211–218. doi: 10.4012/dmj.2014-277. PubMed DOI
Sheikh-Ahmad J.Y. Machining of Polymer Composites. Springer; New York, NY, USA: 2009. ISBN 978-0-387-35539-9. DOI