Long-term dynamics of trematode infections in common birds that use farmlands as their feeding habitats
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DE07P04OMG007
Ministerstvo Kultury
PubMed
34353362
PubMed Central
PMC8344216
DOI
10.1186/s13071-021-04876-2
PII: 10.1186/s13071-021-04876-2
Knihovny.cz E-zdroje
- Klíčová slova
- Agricultural landscapes, Biodiversity decline, Common farmland birds, Helminths, Population dynamics, Trematoda,
- MeSH
- farmy MeSH
- infekce červy třídy Trematoda epidemiologie veterinární MeSH
- nemoci ptáků epidemiologie parazitologie MeSH
- prevalence MeSH
- ptáci MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
BACKGROUND: The biodiversity of farmland habitats is witnessing unprecedented change, mostly in declines and simplification of assemblages that were established during centuries of the use of traditional agricultural techniques. In Central Europe, conspicuous changes are evident in populations of common farmland birds, in strong contrast to forest birds in the same region. However, there is a lack of information on longitudinal changes in trematodes that are associated with common farmland birds, despite the fact that diversity of trematodes is directly linked to the preservation of long-established food webs and habitat use adaptations of their hosts. METHODS: We analyzed the population trends of trematodes for the period 1963-2020 in six bird species that use Central European farmlands as their predominant feeding habitats. Namely, we examined Falco tinnunculus, Vanellus vanellus, winter populations of Buteo buteo, Ciconia ciconia, extravilan population of Pica pica, and Asio otus, all originating from the Czech Republic. RESULTS: We observed dramatic population losses of all trematode species in C. ciconia and V. vanellus; the changes were less prominent in the other examined hosts. Importantly, the declines in prevalence and intensity of infection affected all previously dominant species. These included Tylodelphys excavata and Chaunocephalus ferox in C. ciconia, Lyperosomum petiolatum in P. pica, Strigea strigis in A. otus, Neodiplostomum attenuatum and Strigea falconis in B. buteo (χ2 test P < 0.001 each), and Echinoparyphium agnatum and Uvitellina adelpha in V. vanellus (completely absent in 2011-2000). In contrast, the frequency and spectrum of isolated records of trematode species did not change to any large extent except those in V. vanellus. CONCLUSIONS: The analysis of six unrelated common bird species that use farmlands as their feeding habitats revealed a previously unreported collapse of previously dominant trematode species. The previously dominant trematode species declined in terms of both prevalence and intensity of infection. The causes of the observed declines are unclear; of note is, however, that some of the broadly used agrochemicals, such as azole fungicides, are well known for their antihelminthic activity. Further research is needed to provide direct evidence for effects of field-realistic concentrations of azole fungicides on the survival and fitness of trematodes.
Charles University 3rd Faculty of Medicine Prague Czech Republic
Comenius Museum Moravian Ornithological Station Přerov Czech Republic
Zobrazit více v PubMed
Carlson J, Hopkins S, Bell KC, Doña J, Godfrey SS, Kwak ML, Lafferty KD, Moir ML, Speer KA, Strona G, Torchin M, Wood CL. A global parasite conservation plan. Biol Conserv. 2020;250:108596. doi: 10.1016/j.biocon.2020.108596. DOI
Dougherty ER, Carlson CJ, Bueno VM, Burgio KR, Cizauskas CA, Clements CF, Seidel DP, Harris NC. Paradigms for parasite conservation. Conserv Biol. 2016;30:724–733. doi: 10.1111/cobi.12634. PubMed DOI
Costello MJ, May RM, Stork NE. Can we name Earths species before they go extinct? Science. 2013;339:413–416. doi: 10.1126/science.1230318. PubMed DOI
Reif J, Voříšek P, Šťastný K, Bejček V, Petr J. Population increase of forest birds in the Czech Republic between 1982 and 2003. Bird Study. 2007;54:248–255. doi: 10.1080/00063650709461481. DOI
Reif J, Storch D, Voříšek P, Šťastný K, Bejček V. Bird-habitat associations predict population trends in central European forest and farmland birds. Biodiv Conserv. 2008;17:3307–3319. doi: 10.1007/s10531-008-9430-4. DOI
Keas BE, Blankespoor HD. The prevalence of cercariae from Stagnicola emarginata (Lymnaeidae) over 50 years in northern Michigan. J Parasitol. 1997;83:536–540. doi: 10.2307/3284427. PubMed DOI
Faltýnková A, Haas W. Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): before and today. Parasitol Res. 2006;99:572–582. doi: 10.1007/s00436-006-0197-9. PubMed DOI
Serbina EA. Characteristics of the seasonal development of Schistogonimus rarus (Trematoda: Prosthogonimidae). An essay on quantitative estimation of the trematode in the ecosystem of the Malye Chany lake (south of Western Siberia) Parazitologiia. 2008;42:53–65. PubMed
Serbina EA. Cercariae Opisthorchis felineus and Metorchis bilis from first intermediate hosts for the first time in basin of Chany lake (Novosibirsk region, Russia) is found. Russian J Parasitol. 2016;37:421–429. doi: 10.12737/21809. DOI
Serbina EA. The effect of trematode parthenites on the individual fecundity of Bithynia troscheli (Prosobranchia: Bithyniidae) Acta Parasitol. 2015;60:40–49. PubMed
Serbina EA, Bonina OM. Dynamics of foci of bird notocotylidosis in the ecosystem of Lake Chany (Western Siberia) in the last 80 years. Russian J Parasitol. 2015;3:29–36.
Sitko J, Heneberg P. Systemic collapse of a host-parasite trematode network associated with wetland birds in Europe. Parasitol Res. 2020;119:935–945. doi: 10.1007/s00436-020-06624-4. PubMed DOI
Sitko J, Heneberg P. Emerging helminthiases of song thrush (Turdus philomelos) in central Europe. Parasitol Res. 2020;119:4123–4134. doi: 10.1007/s00436-020-06911-0. PubMed DOI
Hallmann CA, Foppen RPB, van Turnhout CAM, de Kroon H, Jongejans E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature. 2014;511:341–343. doi: 10.1038/nature13531. PubMed DOI
Badry A, Schenke D, Treu G, Krone O. Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. Environ Res. 2021;193:110602. doi: 10.1016/j.envres.2020.110602. PubMed DOI
Christensen TK, Lassen P, Elmeros M. High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch Environ Contam Toxicol. 2012;63:437–444. doi: 10.1007/s00244-012-9771-6. PubMed DOI
Reif J, Voříšek P, Šťastný K. Bejček V Population trends of birds in the Czech Republic during 1982–2005. Sylvia. 2006;42:22–37.
Voříšek P. Trends of common farmland birds in Europe. Prague: ČSO; 2006. http://oldcso.birdlife.cz/index.php?ID=1320. Accessed 28 Sep 2020.
Koubek P, Vojtek J. Příspěvek k poznání helmintofany našich havranovitých (Corvidae) Folia Fac Sci Nat Univ Purkyn Brun, Biol. 1973;40:71–101.
Rutkowska M. A study of the helminth fauna of Corvidae in Poland. Acta Parasitol Pol. 1973;21:183–237.
Škarda J. The helminthofauna of some wild birds in Czechoslovakia. Acta Univ Agricult Brno. 1964;12:269–293.
Vaidova SM. Helminths of birds of Azerbaijan. Baku: Elm; 1978.
Macko JK. Die Plattwürmer des Kiebitzes (Vanellus vanellus L.) in der Ostslowakei. Biologia. 1959;15:523–30.
Smogorzhevskaya LA. Helminth parasites of waterfowl and marsh birds from the fauna of the Ukraine. Kiev: Naukova Dumka; 1976.
Jenni L, Winkler R. Moult and ageing of European passerines. London: Helm; 2020.
Hájek V. Určování stáří a pohlaví nepěvců. Přerov: Okresní vlastivědné museum J. A. Komenského; 1984.
Sitko J, Heneberg P. Composition, structure and pattern of helminth assemblages associated with central European herons (Ardeidae) Parasitol Int. 2015;64:100–112. doi: 10.1016/j.parint.2014.10.009. PubMed DOI
Yamaguti S. Systema Helminthum: the digenetic trematodes of vertebrates, New York: Interscience Publishers; 1958.
Schell SC. Handbook of trematodes of North America north of Mexico. Idaho: University of Idaho Press; 1985.
Gibson DI, Jones A, Bray RA. Keys to the Trematoda, New York: CAB International; 2002.
Gibson DI, Jones A, Bray RA. Keys to the Trematoda, New York: CAB International; 2005.
Gibson DI, Jones A, Bray RA. Keys to the Trematoda, New York: CAB International; 2008.
Colwell RK. Biodiversity: concepts, patterns and measurement. In: Levin SA, editor. The Princeton guide to ecology. Princeton: Princeton University Press; 2009. pp. 257–263.
Heneberg P, Sitko J, Těšínský M, Rząd I, Bizos J. Central European Strigeidae Railliet, 1919 (Trematoda: Strigeidida): molecular and comparative morphological analysis suggests the reclassification of Parastrigea robusta Szidat, 1928 into Strigea Abildgaard, 1790. Parasitol Int. 2018;67:688–701. doi: 10.1016/j.parint.2018.07.003. PubMed DOI
Heneberg P, Sitko J, Těšínský M. Paraphyly of Conodiplostomum Dubois, 1937. Parasitol Int. 2020;76:102033. PubMed
Sitko J, Heneberg P. Composition, structure and pattern of helminth assemblages associated with central European storks (Ciconiidae) Parasitol Int. 2015;64:130–134. doi: 10.1016/j.parint.2014.11.004. PubMed DOI
Sitko J. Trematodes of birds of prey (Falconiformes) in Czech Republic. Helminthologia. 1998;35:131–146.
Okulewicz A, Sitko J. Parasitic helminthes – probable cause of death of birds. Helminthologia. 2012;49:241–246. doi: 10.2478/s11687-012-0045-7. DOI
Heneberg P, Sitko J. Cryptic speciation among Tylodelphys spp.: the major helminth pathogens of fish and amphibians. Parasitol Res. 2021;120:1687–97. PubMed
de Jong Y, Verbeek M, Michelsen V, de Place BP, Los W, Steeman F, et al. Fauna Europaea—all European animal species on the web. Biodivers Data J. 2014;2:e4034. PubMed PMC
Sitko J, Bizos J, Sherrard-Smith E, Stanton DWG, Komorová P, Heneberg P. Integrative taxonomy of European parasitic flatworms of the genus Metorchis Looss, 1899 (Trematoda: Opisthorchiidae) Parasitol Int. 2016;65:258–267. doi: 10.1016/j.parint.2016.01.011. PubMed DOI
Sitko J, Faltýnková A, Scholz T. Checklist of the trematodes (Digenea) of birds. Prague: Academia; 2006.
Willis AD. Rarefaction, alpha diversity, and statistics. Front Microbiol. 2019;10:2407. doi: 10.3389/fmicb.2019.02407. PubMed DOI PMC
Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987;43:783–791. doi: 10.2307/2531532. PubMed DOI
Chao A, Chazdon RL, Colwell RK, Shen T-J. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol Lett. 2005;8:148–159. doi: 10.1111/j.1461-0248.2004.00707.x. DOI
Poole RW. An introduction to quantitative ecology. New York: McGraw-Hill; 1974.
Galaktionov KV, Dobrovolskij AA. The trematode life cycle as a system of adaptations. In: Fried B, Graczyk TK, editors. The biology and evolution of trematodes. Dordrecht: Springer; 2003. pp. 215–317.
Esch GW, Curtis LA, Barger MA. A perspective on the ecology of trematode communities in snails. Parasitology. 2001;123(Suppl):S57–75. doi: 10.1017/S0031182001007697. PubMed DOI
Hechinger RF, Lafferty KD. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc Biol Sci. 2005;272:1059–1066. PubMed PMC
Skirnisson K. Association of helminth infections and food consumption in common eiders Somateria mollissima in Iceland. J Sea Res. 2015;104:41–50. doi: 10.1016/j.seares.2015.05.005. DOI
Strona G. Past, present and future of host-parasite co-extinctions. Int J Parasitol: Parasites Wildl. 2015;4:431–441. PubMed PMC
Kołodziej-Sobocińska M. Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mammal Res. 2019;64:301–318. doi: 10.1007/s13364-019-00423-8. DOI
Rahman ML, Tarrant S, McCollin D, Ollerton J. The conservation value of restored landfill sites in the East Midlands, UK for supporting bird communities. Biodiv Conserv. 2011;20:1879–1893. doi: 10.1007/s10531-011-0064-6. DOI
Orlowski G, Karg J, Jerzak L, Bocheński M, Profus P, Książkiewicz-Parulska Z, Zub K, Ekner-Grzyb A, Czarnecka J. Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci Tot Environ. 2019;646:491–502. doi: 10.1016/j.scitotenv.2018.07.297. PubMed DOI
Meeus JHA. The transformation of agricultural landscapes in Western Europe. Milieu. 1990;6:225–236.
Pain D, Pienkowski MW. Farming and birds in Europe. London: Academic Press; 1997.
Robinson RA, Sutherland WJ. Post war changes in arable farming and biodiversity in Great Britain. J Appl Ecol. 2002;39:157–176. doi: 10.1046/j.1365-2664.2002.00695.x. DOI
Butet A, Michel N, Rantier Y, Comor V, Hubert-Moy L, Nabucet J, Delettre Y. Responses of common buzzard (Buteo buteo) and Eurasian kestrel (Falco tinnunculus) to land use changes in agricultural landscapes of Western France. Agricult Ecosyst Environ. 2010;138:152–159. doi: 10.1016/j.agee.2010.04.011. DOI
Szép T, Nagy K, Nagy Z, Halmo G. Population trends of common breeding and wintering birds in Hungary, decline of longdistance migrant and farmland birds during 1999–2012. Ornis Hung. 2012;20:13–63. doi: 10.2478/orhu-2013-0007. DOI
Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, et al. Fungicides: an overlooked pesticide class? Environ Sci Technol. 2019;53:3347–3365. doi: 10.1021/acs.est.8b04392. PubMed DOI PMC
Heneberg P, Svoboda J, Pech P. Claustral colony founding does not prevent sensitivity to the detrimental effects of azole fungicides on the fecundity of ants. J Environ Manag. 2021;280:111740. doi: 10.1016/j.jenvman.2020.111740. PubMed DOI
Mussen EC, Lopez JE, Peng CYS. Effects of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environ Entomol 2004;33:1151–4.
Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett. 2016;14:317–329. doi: 10.1007/s10311-016-0566-2. DOI
Hemphill A, Stadelmann B, Scholl S, Müller J, Spiliotis M, Müller N, Gottstein B, Siles-Lucas M. Echinococcus metacestodes as laboratory models for the screening of drugs against cestodes and trematodes. Parasitology. 2010;137:569–587. doi: 10.1017/S003118200999117X. PubMed DOI
Keiser J. In vitro and in vivo trematode models for chemotherapeutic studies. Parasitology. 2010;137:589–603. doi: 10.1017/S0031182009991739. PubMed DOI
Pakharukova MY, Pakharukov YV, Mordvinov VA. Effects of miconazole/clotrimazole and praziquantel combinations against the liver fluke Opisthorchis felineus in vivo and in vitro. Parasitol Res. 2018;117:2327–2331. doi: 10.1007/s00436-018-5895-6. PubMed DOI
Vale N, Gouveia MJ, Gärtner F. Current and novel therapies against helminthic infections: The potential of antioxidants combined with drugs. Biomolecules. 2020;10:350. doi: 10.3390/biom10030350. PubMed DOI PMC
Crawford LM, Franco DA. Animal drugs and human health. Boca Raton: CRC Press; 1994.
Hudson PJ, Dobson AP, Lafferty KD. Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol. 2006;21:381–385. doi: 10.1016/j.tree.2006.04.007. PubMed DOI
Aguirre-Macedo ML, Vidal-Martínez VM, Lafferty KD. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon. Int J Parasitol. 2011;41:1403–1408. doi: 10.1016/j.ijpara.2011.10.002. PubMed DOI
Wood CL, Lafferty KD. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol Evol. 2013;28:239–247. doi: 10.1016/j.tree.2012.10.011. PubMed DOI
Rząd I, Sitko J, Sałamantin R, Wysocki D. Helminth community structure study on urban and forest blackbird (Turdus merula L.) populations in relation to seasonal bird migration on the south Baltic Sea coast (NW Poland). Helminthologia. 2014;51:117–29.
Wood CL, Lafferty KD, DeLeo G, Young HS, Hudson PJ, Kuris AM. Does biodiversity protect humans against infectious disease? Ecology. 2014;95:817–832. doi: 10.1890/13-1041.1. PubMed DOI
Kurashvili BE. Helminths of game birds of Georgia. Moscow: Izd Akad Nauk SSSR; 1957.
Sultanov MA. The Helminths of Domestic and Game Birds in Uzbekistan. Tashkent: Izd AN Uzbek SSR; 1963.
Macko JK. Die Fauna der Plathelminthes des Storches Ciconia ciconia L. Folia Parasitol. 1961;8:283–94.
Gundlach JL. Contribution to the helminthofauna of storks (Ciconia ciconia L. and C. nigra L.) originating from the Lublin Palatinate. Acta Parasitol Pol. 1969;16:83–9.
Schuster R, Schaffer T, Shimalov V. Die Helminthenfauna einheimischer Weiβstörche (Ciconia ciconia) Berl Münch Tierärztl Wschr. 2002;115:435–439. PubMed
Girişgin AO, Birlik S, Senlik B, Yildirimhan HS. Intestinal helminths of the white stork (Ciconia ciconia Linnaeus, 1758) from an inter-route site in Turkey. Acta Vet Hung. 2017;65:221–233. doi: 10.1556/004.2017.022. PubMed DOI
Stoimenov K. [Contribution to the helminthofauna of the magpie (Pica pica L.) in northeastern Bulgaria]. Izvest Tsentr Khelmint Lab. 1962;7:161–7.
Borgsteede FHM, Okulewicz A, Okulewicz J. A study of the helminth fauna of birds belonging to the Passeriformes in the Netherlands. Acta Parasitol. 2000;45:14–21.
Halajian A, Eslami A, Mobedi I, Amin O, Mariaux J, Mansoori J, Tavakol S. Gastrointestinal helminths of magpies (Pica pica), rooks (Corvus frugilegus) and carrion crows (Corvus corone) in Mazandaran province, north of Iran. Iranian J Parasitol. 2011;6:38–44. PubMed PMC
Girişgin AO, Alasonyalilar Demirer A, Büyükcangaz E, Khider M, Birlik S, Ipek V. Postmortem findings on a group of Pica pica (Passeriformes: Corvidae) Ankara Üniv Vet Fak Derg. 2019;66:155–161.
Furmaga S. The helminth fauna of predatory birds (Accipitres et Striges) of the environment of Lublin. Acta Parasitol Pol. 1957;5:215–287.
Kutzer E, Frey H, Nöbauer H. Zur Parasitenfauna österreichischer Eulenvögel (Strigiformes) Angew Parasitol. 1982;23:190–197. PubMed
Taft SJ, Suchow K, Van Horn M. Helminths from some Minnesota and Wisconsin raptors. J Helminthol Soc Wash. 1993;60:260–263.
Lierz M, Göbel T, Schuster R. Untersuchungen zum Vorkommen von Parasiten bei einheimischen Greifvögeln und Eulen. Berl Münch Tierärztl Wschr. 2002;115:43–52. PubMed
Borgsteede FHM, Okulewicz A, Zoun PEF, Okulewicz J. The helminth fauna of birds of prey (Accipitriformes, Falconiformes and Strigiformes) in the Netherlands. Acta Parasitol. 2003;48:200–207.
Sanmartín ML, Álvarez F, Barreiro G, Leiro J. Helminth fauna of Falconiform and Strigiform birds of prey in Galicia. Northwest Spain Parasitol Res. 2004;92:255–263. doi: 10.1007/s00436-003-1042-z. PubMed DOI
Ferrer D, Molina R, Castellà J, Kinsella JM. Parasitic helminths in the digestive tract of six species of owls (Strigiformes) in Spain. Vet J. 2004;167:181–185. doi: 10.1016/S1090-0233(03)00103-5. PubMed DOI
Rząd I, Sitko J, Wysocki D, Stępniewski K. Digenean trematodes from six species of birds (Passeriformes, Piciformes and Strigiformes) from north-western Poland. Wiad Parazytol. 2011;57:271–276.
Santoro M, Mattiucci S, Nascetti G, Kinsella JM, Di Prisco F, Troisi S, D’Alessio N, Veneziano V, Aznar FJ. Helminth communities of owls (Strigiformes) indicate strong biological and ecological differences from birds of prey (Accipitriformes and Falconiformes) in Southern Italy. PLoS ONE. 2012;7:e53375. doi: 10.1371/journal.pone.0053375. PubMed DOI PMC
Komorová P, Sitko J, Špakulová M, Hurníková Z. Intestinal and liver flukes of birds of prey (Accipitriformes, Falconiformes, Strigiformes) from Slovakia: uniform or diverse compound? Parasitol Res. 2016;115:2837–2844. doi: 10.1007/s00436-016-5034-1. PubMed DOI
Komorová P, Sitko J, Špakulová M, Hurníková Z, Salamantin R, Chovancová G. New data on helminth fauna of birds of prey (Falconiformes, Accipitriformes, Strigiformes) in the Slovak Republic. Helminthologia. 2017;54:314–321. doi: 10.1515/helm-2017-0038. DOI
Kutzer E, Frey H, Kotremba J. Zur Parasitenfauna österreichischer Greifvögel (Falconiformes) Angew Parasitologie. 1980;21:183–205. PubMed
Illescas Gomez MP, Rodriguez Osorio M, Aranda MF. Parasitation of falconiform, strigiform and passeriform (Corvidae) birds by helminths in Spain. Res Rev Parasitol. 1993;53:129–135.
Krone O. Endoparasites in free-ranging birds of prey in Germany. In: Lumeij JT, Remple JD, Redig PT, Lierz M, Cooper JE, editors. Raptor biomedicine III. Lake Worth: Zoological Education Network; 2000. pp. 101–116.
Ferrer D, Molina R, Adelantado C, Kinsella JM. Helminths isolated from the digestive tract of diurnal raptors in Catalonia. Spain Vet Rec. 2004;154:17–20. doi: 10.1136/vr.154.1.17. PubMed DOI
Papazahariadou M, Diakou A, Papadopoulos E, Georgopoulou I, Komnenou A, Antoniadou-Sotiriadou K. Parasites of the digestive tract in free-ranging birds in Greece. J Nat Hist. 2008;42:381–398. doi: 10.1080/00222930701835357. DOI
Santoro M, Tripepi M, Kinsella JM, Panebianco A, Mattiucci S. Helminth infestation in birds of prey (Accipitriformes and Falconiformes) in Southern Italy. Vet J. 2010;186:119–122. doi: 10.1016/j.tvjl.2009.07.001. PubMed DOI
Santoro M, Kinsella JM, Galiero G, Uberti B, Aznar FJ. Helminth community structure in birds of prey (Accipitriformes and Falconiformes in Southern Italy. J Parasitol. 2012;98:22–9. doi: 10.1645/GE-2924.1. PubMed DOI
Tezel M, Girişgin AO, Birlik S, Yildirimhan HS, Şenlik B. Helminths of the digestive tract in Buteo buteo (Falconiformes: Falconidae) in Bursa Province of Northwest Turkey. Turk J Zool. 2015;39:323–327. doi: 10.3906/zoo-1403-24. DOI
Kobyshev NM, Markov GS, Ryzhikov KM. Ecological analysis of parasite fauna in numerous species of falcon-like birds from Lower Volga region. Parasites and Parasitosis in Animals and Humans. Kiev: Naukova dumka; 1975. pp. 25–38.
Mohammad MK. Helminth parasites of the kestrel Falco tinnunculus L. 1758 in Iraq. Bull Iraq nat Hist Mus. 1999;9:123–9.
Antunes AFN. Pesquisa de helmintes gastrointestinais em quarto espécies de aves de rapina na zona centro de Portugal: Buteo buteo, Falco tinnunculus, Tyto alba e Athene noctua. MIMV Thesis. Lisboa: Fac Med Vet, Univ Lisboa; 2016.
Bykhovskaya-Pavlovskaya IE. Fauna of trematodes of birds in west Siberia and its dynamics. Parazitologicheskiy Sbornik. 1953;15:5–117.
Hintzen J, Thielebein J, Daugschies A, Schmäschke R. Trematodes from the Northern Lapwing, Vanellus vanellus (Charadriidae), from Central Germany. Parasitol Res. 2017;116:661–666. doi: 10.1007/s00436-016-5330-9. PubMed DOI