Long-term study reveals central European aerial insectivores as an unusual group of hosts that harbor mostly helminths that are unable to complete life-cycles in the nesting quarters of their hosts
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DE07P04OMG007
Ministerstvo Kultury
PubMed
36703152
PubMed Central
PMC9878787
DOI
10.1186/s13071-022-05636-6
PII: 10.1186/s13071-022-05636-6
Knihovny.cz E-zdroje
- Klíčová slova
- Aerial insectivores, Diptera, Helminths, Migration, Population dynamics, Trematoda, Urban birds,
- MeSH
- Acanthocephala * MeSH
- cizopasní červi * MeSH
- helmintózy zvířat * epidemiologie parazitologie MeSH
- ptáci parazitologie MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
BACKGROUND: Central European aerial insectivores are long-distance migrants that winter in sub-Saharan Africa. Most of them employ the fly-and-forage migrating strategy and differ in their food composition. The composition and structure of helminth component communities of these hosts are poorly understood, and information regarding seasonality and long-term changes is unavailable. METHODS: From 1963 to 2022, we analyzed the population trends of helminths in five aerial insectivore species. Namely, we examined Apus apus, Hirundo rustica, Delichon urbicum, Riparia riparia, and Ficedula albicollis; all originated from the Czech Republic. RESULTS: We identified central European aerial insectivores as hosts that are parasitized mostly by helminths that cannot complete their life-cycles in the nesting quarters of their hosts. This phenomenon is unknown in other bird host species. In contrast, only a single dominant trematode species that completes its life-cycle locally colonized the central European aerial insectivores. All other dominant species of Trematoda, all Nematoda, and all Acanthocephala were dependent on intermediate hosts unavailable in the nesting quarters of the examined bird hosts. Surprisingly, these helminths transmitted from winter quarters or migratory routes were diverse, and many of them were abundant in terms of both prevalence and intensity of infection. The helminth component communities of aerial insectivores were dynamic systems. During the study period, three species became new and regularly encountered members of helminth fauna of examined hosts, and other species gradually increased or decreased their intensity of infection. In contrast to other groups of bird hosts, the dominant helminth species of aerial insectivores did not experience local extinctions or rapid population losses. CONCLUSIONS: The analysis of helminths of five central European aerial insectivores revealed component communities that heavily rely on completing host-parasite cycles at migration routes or wintering grounds. The composition of the analyzed component communities changed dynamically during the 60-year-long study period, but there was no evidence of large-scale declines in abundance or prevalence.
3rd Faculty of Medicine Charles University Prague Czech Republic
Moravian Ornithological Station Comenius Museum Prerov Czech Republic
Zobrazit více v PubMed
Åkesson S, Atkinson PW, Bermejo A, de la Puente J, Ferri M, Hewson CM, Holmgren J, Kaiser E, Kearsley L, Klaassen RHG, Kolunen H, Matsson G, Minelli F, Norevik G, Pietiäinen H, Singh NJ, Spina F, Viktora L, Hedenström A. Evolution of chain migration in an aerial insectivorous bird, the common swift Apus apus. Evolution. 2020;74:2377–2391. doi: 10.1111/evo.14093. PubMed DOI PMC
Tiyawattanaroj W, Jung A, Mohr L, Legler M. Examination of common swifts (Apus apus) for Salmonella shedding in the area of Hannover, Lower Saxony, Germany. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2021;49:359–362. doi: 10.1055/a-1580-8408. PubMed DOI
McClenaghan B, Nol E, Kerr KCR. DNA metabarcoding reveals the broad and flexible diet of a declining aerial insectivore. Auk. 2019;136:uky003. doi: 10.1093/auk/uky003. DOI
Beal FEL. Food habits of the swallows: a family of valuable native birds. US Dept Agric Bull. 1918;619:1–28.
Cucco M, Bryant DM, Malacarne G. Differences in diet of common (Apus apus) and pallid (Apus pallidus) swifts. Avocetta. 1993;17:131–138.
Gory G. Le regime alimentaire du Martinet noire Apus apus en region méditerraneíenne. Erv Écol (Terre Vie) 2008;63:251–260. doi: 10.3406/revec.2008.1416. DOI
Tischmacher J. Etude du régime alimentaire du Martinet noir (Apus apus) dans les Basses-Pyrénées. Bull Cent Etud Rech Sci Biarritz. 1961;3:399–401.
Turner AK. The barn swallow. London: T. & A. D. Poyser; 2006.
Ambrosini R, Bolzern A, Canova L, Arieni S, Møller AP, Saino N. The distribution and colony size of barn swallow in relation to agricultural land use. J Appl Ecol. 2002;39:524–534. doi: 10.1046/j.1365-2664.2002.00721.x. DOI
Møller AP. The effect of dairy farming on barn swallow Hirundo rustica abundance, distribution and reproduction. J Appl Ecol. 2001;38:378–389. doi: 10.1046/j.1365-2664.2001.00593.x. DOI
Orlowski G, Karg J. Partitioning the effects of livestock farming on the diet of an aerial insectivorous passerine, the barn swallow Hirundo rustica. Bird Study. 2013;60:111–123. doi: 10.1080/00063657.2012.748717. DOI
Orlowski G, Karg J. Diet of nestling barn swallows Hirundo rustica in rural areas of Poland. Centr Eur J Biol. 2011;6:1023–1035.
Bryant DM. The factors influencing the selection of food by the house martin (Delichon urbica (L.)) J Anim Ecol. 1973;42:539–564. doi: 10.2307/3123. DOI
Génier CSV. Diet composition and mercury exposure in bank swallows (Riparia riparia) breeding at lakeshore and aggregate pits. MSc. thesis. London: University of Western Ontario; 2019.
Chaplyhina AB, Yuzyk DI, Savyska NO, Hramma VM. Invertebrates in the diet of collared flycatcher (Ficedula albicollis) nestlings in transformed forest ecosystems of north-eastern Ukraine. Balt For. 2022;28:439. doi: 10.46490/BF439. DOI
Cholewa M, Wesołowski T. Nestling food of European hole-nesting passerines: do we know enough to test the adaptive hypotheses on breeding seasons? Acta Ornithol. 2011;46:105–116. doi: 10.3161/000164511X625874. DOI
Sitko J. Variability and systematic status of Zoonorchis clathratum (Trematoda: Dicrocoeliidae), a parasite of swifts and swallows. Fol Parasitol. 1995;42:193–198.
Sitko J. Revision of the genus Brachydistomum Travassos, 1944 (Digenea: Dicrocoelidae) Helminthologia. 1994;31:57–65.
Odening K. Mischinfektionen mit zwei Plagiorchis-Arten (Trematoda, Digenea) bei einheimischen Schwalben und Mauerseglern. Mber Dtsch Akad Wiss Berlin. 1961;3:584–590.
Sey O. Adatok a Bakony gerinces állatainak parazita féregfaunájához, II. A Veszprém Megyei Múzeumok Közleménvei. 1973;12:231–240.
Shumilo RP. Parasite fauna of hirundinid birds and its practical significance. Parasites Anim Plants. 1968;3:62–73.
Jenni L, Winkler R. Moult and ageing of European passerines. London: Helm; 2020.
Hájek V. Určování stáří a pohlaví nepěvců. Přerov, Okresní vlastivědné museum J. A. Komenského; 1984.
Sitko J, Heneberg P. Composition, structure and pattern of helminth assemblages associated with central European herons (Ardeidae) Parasitol Int. 2015;64:100–112. doi: 10.1016/j.parint.2014.10.009. PubMed DOI
Heneberg P, Sitko J, Casero M, Rząd I. New molecular data help clarify the taxonomy of Central European avian Dicrocoeliidae Looss, 1899 (Trematoda: Plagiorchiida). Int J Parasitol Parasites Wildl. 2023 (subm.). PubMed PMC
Heneberg P, Sitko J, Bizos J. Integrative taxonomy of central European parasitic flatworms of the family Prosthogonimidae Lühe, 1909 (Trematoda: Plagiorchiida) Parasitol Int. 2015;64:264–273. doi: 10.1016/j.parint.2015.02.003. PubMed DOI
Heneberg P, Szép T, Iciek T, Literák I. Collyriclosis in central European hirundines. Parasitol Res. 2011;109:699–706. doi: 10.1007/s00436-011-2301-z. PubMed DOI
Heneberg P, Sitko J, Bizos J. Molecular and comparative morphological analysis of central European parasitic flatworms of the superfamily Brachylaimoidea Allison, 1943 (Trematoda: Plagiorchiida) Parasitology. 2016;143:455–474. doi: 10.1017/S003118201500181X. PubMed DOI
de Jong Y, Verbeek M, Michelsen V, de Place BP, Los W, Steeman F, Bailly N, Basire C, Chylarecki P, Stloukal E, Hagedorn G, Wetzel FT, Glöckler F, Kroupa A, Korb G, Hoffmann A, Häuser C, Kohlbecker A, Müller A, Güntsch A, Stoev P, Penev L. Fauna Europaea—all European animal species on the web. Biodivers Data J. 2014;2:e4034. doi: 10.3897/BDJ.2.e4034. PubMed DOI PMC
Sitko J, Faltýnková A, Scholz T. Checklist of the trematodes (Digenea) of birds. Prague: Academia; 2006.
Willis AD. Rarefaction, alpha diversity, and statistics. Front Microbiol. 2019;10:2407. doi: 10.3389/fmicb.2019.02407. PubMed DOI PMC
Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987;43:783–791. doi: 10.2307/2531532. PubMed DOI
Chao A, Chazdon RL, Colwell RK, Shen T-J. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol Lett. 2005;8:148–159. doi: 10.1111/j.1461-0248.2004.00707.x. DOI
Poole RW. An introduction to quantitative ecology. New York: McGraw-Hill; 1974.
Sitko J, Heneberg P. Host specificity and seasonality of helminth component communities in central European grebes (Podicipediformes) and loons (Gaviiformes) Parasitol Int. 2015;64:377–388. doi: 10.1016/j.parint.2015.05.012. PubMed DOI
Sitko J, Heneberg P. Emerging helminthiases of song thrush (Turdus philomelos) in Central Europe. Parasitol Res. 2020;119:4123–4134. doi: 10.1007/s00436-020-06911-0. PubMed DOI
Sinclair ARE. Factors affecting the food supply and breeding season of resident birds and movements of Palaearctic migrants in a tropical African savannah. Ibis. 1978;120:480–497. doi: 10.1111/j.1474-919X.1978.tb06813.x. DOI
Drake VA, Reynolds DR. Radar entomology: observing insect flight and migration. Wallingford: CAB International; 2012.
Voipio P. On, “the thunder flights” in the House Martin. Ornis Fenn. 1970;47:15–19.
Åkesson S, Klaassen R, Holmgren J, Fox JW, Hedenström A. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. PLoS ONE. 2012;7:e41195. doi: 10.1371/journal.pone.0041195. PubMed DOI PMC
Imlay TL, Saldanha S, Taylor PD. The fall migratory movements of bank swallows, Riparia riparia: fly-and-forage migration? Avian Conserv Ecol. 2020;15:2. doi: 10.5751/ACE-01463-150102. DOI
Král M, Adamík P, Krause F, Krist M, Stříteský J, Bureš S, Ševčík J, Pavelka J, Červenka P, Neoral E, Košťál J. Fenologie lejska bělokrkého (Ficedula albicollis) na Moravě. Sylvia. 2011;47:17–32.
Adamík P, Emmenegger T, Briedis M, Gustafsson L, Henshaw I, Krist M, Laaksonen T, Liechti F, Procházka P, Salewski V, Hahn S. Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci Rep. 2016;6:21560. doi: 10.1038/srep21560. PubMed DOI PMC
Vasilev I, Kuraschvili BE, Ryzhikov MM. Nematodes and Acanthocephales of birds in the Black and Caspian seaside parts. Tbilisi: Mecniereba; 1983.
Quentin JC, Seureau C, Gabrion C. Cycle biologique d'Acuaria anthuris (Rudolphi, 1819), nematode parasite de la pie. Z Parasitenkd. 1972;39:103–129. doi: 10.1007/BF00329639. PubMed DOI
Anderson RC. Nematode parasites of vertebrates, their development and transmission. Wallingford: CAB International; 1992.
Krasnolobova T. Trematody fauny SSSR rod Plagiorchis. Moscow: Nauka; 1967.
Heneberg P, Faltýnková A, Bizos J, Malá M, Žiak J, Literák I. Intermediate hosts of the trematode Collyriclum faba (Plagiorchiida: Collyriclidae) identified by an integrated morphological and genetic approach. Parasites Vectors. 2015;8:85. doi: 10.1186/s13071-015-0646-3. PubMed DOI PMC
Stafford EW. Platyhelmia in aquatic insects and Crustacea. J Parasitol. 1931;18:131.
Hall JE. Some lecithodendriid metacercariae from Indiana and Michigan. J Parasitol. 1960;46:309–314. doi: 10.2307/3275492. PubMed DOI
Rao KH, Mahdavi R. Metacercaria of Eumegacetes sp. (Trematoda: Lecithodendriidae) in dragon-fly naiads [Libellulidae] from a stream at Waltair. Curr Sci. 1961;30:303–304.
Lyubarskaya OD, Galeeva LK. Rates of infection with trematode metacercariae of dragonflies in the Tatar ASSR. In: Babianskas MA, editor. Voprosy Parazitologii Vodnykh Bezposvonochnykh Zhivotnykh. (Tematicheskii Sbornik) Vilnius: Akademiya Nauk Litovskoi S.S.R., Institut Zoologii, Parazitologii; 1980. pp. 68–70.
Sitko J, Heneberg P. Systemic collapse of a host–parasite trematode network associated with wetland birds in Europe. Parasitol Res. 2020;119:935–945. doi: 10.1007/s00436-020-06624-4. PubMed DOI
Sitko J, Heneberg P. Long-term dynamics of trematode infections in common birds that use farmlands as their feeding habitats. Parasites Vectors. 2021;14:383. doi: 10.1186/s13071-021-04876-2. PubMed DOI PMC
Etxezarreta J, Arizaga J. Characteristics of sand martin Riparia riparia colonies in artificial river walls. Ardeola. 2014;61:127–134. doi: 10.13157/arla.61.1.2014.127. DOI
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. Defaunation in the Anthropocene. Science. 2014;345:401–406. doi: 10.1126/science.1251817. PubMed DOI
Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017;12:e0185809. doi: 10.1371/journal.pone.0185809. PubMed DOI PMC
Forister ML, Pelton EM, Black SH. Declines in insect abundance and diversity: we know enough to act now. Conserv Sci Pract. 2019;1:e80.
Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarlı D, Ammer C, Bauhus J, Fischer M, Habel JC, Linsenmair KE, Nauss T, Penone C, Prati D, Schall P, Schulze E-D, Vogt J, Wöllauer S, Weisser WW. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019;574:671–674. doi: 10.1038/s41586-019-1684-3. PubMed DOI
Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv. 2019;232:8–27. doi: 10.1016/j.biocon.2019.01.020. DOI
Wagner DL. Insect declines in the Anthropocene. Annu Rev Entomol. 2020;65:457–480. doi: 10.1146/annurev-ento-011019-025151. PubMed DOI
Wagner DL, Grames EM, Forister ML, Stopak D. Insect decline in the Athropocene: death by thousand cuts. Proc Natl Acad Sci USA. 2021;118:e2023989118. doi: 10.1073/pnas.2023989118. PubMed DOI PMC