Evolution of chain migration in an aerial insectivorous bird, the common swift Apus apus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Trygger's Foundation
349-2007-8690
AB and JP
Gouvernment of the Basque Country
CTS 12:563
Carl Tryggers Stiftelse för Vetenskaplig Forskning
Action to Swifts
British Thrust for Ornithology
349-2007-8690
Vetenskapsrådet
621-2007-5930
Vetenskapsrådet
621-2010-5584
Vetenskapsrådet
621-2013-4361
Vetenskapsrådet
L
Belora vzw
Kearsley
Belora vzw
AB and JP
Fundación Ibedrola España
349-2007-8690
Swedish Research Council
AB and JP
Fundación Ibedrola España
PubMed
32885859
PubMed Central
PMC7589357
DOI
10.1111/evo.14093
Knihovny.cz E-zdroje
- Klíčová slova
- Annual timing, chain migration, common swift, diffuse competition, dominance by size, prior occupancy,
- MeSH
- biologická evoluce * MeSH
- migrace zvířat * MeSH
- ptáci genetika MeSH
- velikost snůšky MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Evropa MeSH
Spectacular long-distance migration has evolved repeatedly in animals enabling exploration of resources separated in time and space. In birds, these patterns are largely driven by seasonality, cost of migration, and asymmetries in competition leading most often to leapfrog migration, where northern breeding populations winter furthest to the south. Here, we show that the highly aerial common swift Apus apus, spending the nonbreeding period on the wing, instead exhibits a rarely found chain migration pattern, where the most southern breeding populations in Europe migrate to wintering areas furthest to the south in Africa, whereas the northern populations winter to the north. The swifts concentrated in three major areas in sub-Saharan Africa during the nonbreeding period, with substantial overlap of nearby breeding populations. We found that the southern breeding swifts were larger, raised more young, and arrived to the wintering areas with higher seasonal variation in greenness (Normalized Difference Vegetation Index) earlier than the northern breeding swifts. This unusual chain migration pattern in common swifts is largely driven by differential annual timing and we suggest it evolves by prior occupancy and dominance by size in the breeding quarters and by prior occupancy combined with diffuse competition in the winter.
AsOER Associazione Ornitologi Emilia Romagna Italy
Bird Monitoring Unit SEO BirdLife Madrid 28053 Spain
British Trust for Ornithology Thetford IP242PU United Kingdom
Czech Society for Ornithology Praha CZ 150 00 Czech Republic
Faculty of Biological and Environmental Sciences University of Helsinki Helsinki FI 00014 Finland
Falu kommun Falun SE 79183 Sweden
Kloetstraat 48 Melsele B 9120 Belgium
Zobrazit více v PubMed
Åkesson, S. , and Helm B.. 2020. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8:78.
Åkesson, S. , Klaassen R., Holmgren J., Fox J. W., and Hedenström A.. 2012. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light‐level geolocators. PLoS One 7:e41195. PubMed PMC
Åkesson, S. , Bianco G., and Hedenström A.. 2016. Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts. Phil. Trans. R. Soc. B 371:20150393. PubMed PMC
Åkesson, S. , Ilieva M., Karagicheva J., Rakhimberdiev E., Tomotani B., and Helm B.. 2017. Timing avian long‐distance migration: from internal clock mechanisms to global flights. Phil. Trans. R. Soc. B 372:20160252. PubMed PMC
Alerstam, T. , Hedenström A., and Åkesson S.. 2003. Long‐distance migration: evolution and determinants. Oikos 103:247–260.
Ashmole, N. P. 1963. The regulation of numbers of tropical oceanic birds. Ibis 103:458–473.
Ashton, K. G. 2002. Patterns of within‐species body size variation of birds: strong evidence for Bergmann's rule. Global Ecol. Biogeogr. 11:505–523.
Atzberger, C. , and Eilers P. H.. 2011. Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements. Int. J. Remote Sens. 32:3689–3709.
Bäckman, J. , and Alerstam T.. 2001. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus . Proc. R. Soc. B Lond. 268:1081–1087. PubMed PMC
BAS . 2010. Geolocator manual v8. British Antarctic Survey, Cambridge.
BirdLife International . 2018. Species factsheet: Apus apus. Available via http://www.birdlife.org.
Boano, G. , Pellegrino I., Ferri M., Cucco M., Minelli F., and Åkesson S.. 2020. Climate anomalies affect annual survival rates of swifts wintering in sub‐Saharan Africa. Ecol. Evol. 10:7916–7928. PubMed PMC
Brown, J. H. , Gillooly J. F., Allen A. P., Savage V. M., and West G. B.. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–1789.
Chapman, B. B. , Brönmark C., Nilsson J. Å., and Hansson L. A.. 2011. The ecology and evolution of partial migration. Oikos 120:1764–1775.
Cody, M. L. 1966. A general theory of clutch size. Evolution 20:174–184. PubMed
Cox, G. W. 1968. The role of competition in the evolution of migration. Evolution 22:180–192. PubMed
Dokter, A. M. , Åkesson S., Beekhuis H., Bouten W., Buurma L., van Gasteren H., and Holleman I.. 2013. Twilight ascents by common swifts, Apus apus, at dawn and dusk: acquisition of orientation cues? Anim. Behav. 85:545–552.
Drake, V. A. , and Reynolds D. R.. 2012. Radar entomology: observing insect flight and migration. CAB International, Wallingford, U.K.
Ekstrom, P. A. 2004. An advance in geolocation by light. Mem. Natl. Inst. Polar Res. 58:210–226.
Forkel, M. , Carvalhais N., Verbesselt J., Mahecha M., Neigh C., and Reichstein M.. 2013. Trend change detection in NDVI time series: effects of inter‐annual variability and methodology. Remote Sens. 5:2113–2144.
Fort, J. , Pettex E., Tremblay Y., Lorentsen S. H., Garthe S., Votier S., Pons J. B., Siorat F., Furness R. W., Grecian W. J., et al. 2012. Meta‐population evidence of oriented chain migration in northern gannets (Morus bassanus). Front. Ecol. Environ. 10:237–242.
Fransson, T. , Österblom H., and Hall‐Karlsson S.. 2008. Svensk Ringmärkningsatlas. Vol. 2 , Stockholm.
Fretwell, S. D. 1972. . Populations in a seasonal environment, Monographs in Population Biology . Vol. 5 Princeton Univ. Press, Princeton, NJ. PubMed
Fretwell, S. D. , and Lucas H. L. Jr. 1970. On territorial behavior and other factors influencing habitat distribution of birds. 1. Theoretical development. Acta Biotheor. 19:16–36.
Fryxell, J. M. , and Sinclair A. R. E.. 1988. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3:237–241. PubMed
Fudickar, A. M. , Wikelski M., and Partecke J.. 2012. Tracking migratory songbirds: accuracy of light‐level loggers (geolocators) in forest habitats. Methods Ecol. Evol. 3:47–52.
Funk, C. C. , and Brown M. E.. 2006. Intra‐seasonal NDVI projections in semi‐arid Africa. Remote Sens. Environ. 101:249–256.
Gauthreaux, Jr, S. A. 1978. The ecological significance of behavioral dominance Pp. 17–54 in Bateson P. P. G. and Klopfer P. H., eds. Social behavior. Perspectives in ethology. Vol. 3 Springer, Boston, MA.
———. 1982. The ecology and evolution of avian migration systems Pp. 93–168 in Farner D. S., King J. R., and Parkes K. C., eds. Avian biology. Academic Press, New York.
Godfray, H. C. J. , Partridge L., and Harvey P. H.. 1991. Clutch size. Annu. Rev. Ecol. Syst. 22:409–429.
Gow, E. A. , Burke L., Winkler D. W., Knight S. M., Bradley D. W., Clark R. G., Bélisle M., Berzins L. L., Blake T., Bridge E. S., et al. 2019. A range‐wide domino effect and resetting of the annual cycle in a migratory songbird. Proc. R. Soc. B 286:20181916. PubMed PMC
Hedenström, A. , Norevik G., Warfvinge K., Andersson A., Bäckman J., and Åkesson S.. 2016. Annual 10‐month aerial life phase in the common swift Apus apus . Curr. Biol. 26:3066–3070. PubMed
Henningsson, P. , Spedding G. R., and Hedenström A.. 2008. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel. J. Exp. Biol. 211:717–730. PubMed
Holmgren, N. , and Lundberg S.. 1993. Despotic behaviour and the evolution of migration patterns in birds. Ornis Scand. 24:103–109.
Hořák, D. , Tószögyová A., and Storch D.. 2015. Relative food limitation drives geographical clutch size variation in South African passerines: a large‐scale test of Ashmole's seasonality hypothesis. Global Ecol. Biogeogr. 24:437–447.
Imboden, C. , and Imboden D.. 1972. Formel für Orthodrome und Loxodrome bei der Berechnung von Richtung und Distanz zwischen Beringungs‐und Wiederfundort. Vogelwarte 26:336–346.
Jamali, S. , Seaquist J. W., Ardö J., and Eklundh L.. 2011. Investigating temporal relationships between rainfall, soil moisture and modis‐derived NDVI and EVI for six sites in Africa In Proceedings of 34th International Symposium on Remote Sensing of Environment, Sydney, Australia.
Jetz, W. , Sekercioglu C. H., and Böhning‐Gaese K.. 2008. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6:e303. PubMed PMC
Lack, D. 1954. The natural regulation of animal numbers. Clarendon, Oxford.
———. 1956. Swifts in a tower. Meuthen & Co Ltd., London.
———. 1968. Bird migration and natural selection. Oikos 19:1–9.
Lentink, D. , Müller U. K., Stamhuis E. J., De Kat R., Van Gestel W., Veldhuis L. L. M., Henningsson P., Hedenström A., Viedeler J. J., and Van Leeuwen J. L.. 2007. How swifts control their glide performance with morphing wings. Nature 446:1082–1085. PubMed
Lisovski, S. , Hewson C. M., Klaassen R. H. G., Korner‐Nievergelt F., Kristensen M. W., and Hahn S.. 2012. Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3:603–612.
Lockley, R. M. 1970. Non‐stop flight and migration in the common swift Apus apus . Ostrich 8:265–269.
Lundberg, P. 1988. The evolution of partial migration in birds. Trends Ecol. Evol. 3:172–175. PubMed
Lundberg, S. , and Alerstam T.. 1986. Bird migration patterns: conditions for stable geographical population segregation. J. Theor. Biol. 123:403–414.
Morganti, M. , Rubolini D., Åkesson S., Bermejo A., de la Puente J., Lardelli R., Liechti F., Boano G., Tomassetto E., Ferri M., et al. 2017. Effect of light‐level geolocators on apparent survival of two highly aerial swift species. J. Avian Biol. 49:jav‐01521.
Muijres, F. , Henningsson P., Stuiver M., and Hedenström A.. 2012. Aerodynamic flight performance in flap‐gliding birds and bats. J. Theor. Biol. 306:120–128. PubMed
NASA Land Processes Distributed Active Archive Center (LP DAAC) . 2001. ASTER L1B. USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD: https://lpdaac.usgs.gov/.
Newton, I. 2008. The migration ecology of birds . Academic Press, Lond.
Norevik, G. , Boano G., Hedenström A., Lardelli R., Liechti F., and Åkesson S.. 2019. Highly mobile insectivorous swifts perform multiple intra‐tropical migrations to exploit an asynchronous African phenology. Oikos 128:640–648.
Parker, G. A. , and Sutherland W. J.. 1986. Ideal free distributions when individuals differ in competitive ability: phenotype limited ideal free models. Anim. Behav. 34:1222–1242.
Perrins, C. 2005. Common Swift (Swift) Apus apus Pp. 443–445 in Wernham C., Toms M., Marchant J., Clark J., Siriwardena G., and Baillie S., eds. The migration atlas: movements of the birds of Britain and Ireland. T & AD Poyser, Lond.
Phillips, R. A. , Silk J. R. D., Croxall J. P., Afanasyev V., and Briggs D. R.. 2004. Accuracy of geolocation estimates for flying seabirds. Mar. Ecol. Prog. Ser. 266:265–272.
Pianka, E. R. 1974. Niche overlap and diffuse competition. Proc. Nat. Acad. Sci. 71:2141–2145. PubMed PMC
R Development Core Team . 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna: http://www.R-project.org/.
R Development Core Team . (2020). R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. Available from: http://www.R-project.org.
Ricklefs, R. E. 1980. Geographical variation in clutch size among passerine birds: Ashmole's hypothesis. Auk 97:38–49.
Sachs, G. 2017. Energy saving of aerial roosting swifts by dynamic flap‐gliding flight. J. Ornithol. 158:943–953.
Salomonsen, F. 1955. The evolutionary significance of bird migration. Dan. Biol. Medd. 22:1–62.
SAS Institute Inc . 2018. Using JMP® 14.3.0. SAS Institute Inc., Cary, NC.
Sinclair, A. R. E. 1978. Factors affecting the food supply and breeding season of resident birds and movements of Palaearctic migrants in a tropical African savannah. Ibis 120:480–497.
Singh, N. J. , Grachev I. A., Bekenov A. B., and Milner‐Gulland E. J.. 2010. Tracking greenery in central Asia ‐ the migration of the saiga antelope. Diver. Distr. 16:663–675.
Smith, R. B. , Meehan T. D., and Wolf B. O.. 2003. Assessing migration patterns of sharp‐shinned hawks Accipiter striatus using stable‐isotope and band encounter analysis. J. Avian Biol. 34:387–392.
Sutherland, W. J. , and Parker G. A.. 1985. Distribution of unequal competitors Pp. 255–274 in Sibly R. M. and Smith R. H., eds. Behavioural ecology: ecological consequences of adaptive behaviour. Blackwell, Oxford, U.K.
Svensson, L. 1992. Identification guide to European passerines. Fingraf AB; 4th , Södertälje, Stockholm.
Thorup, K. , Tøttrup A. P., Willemoes M., Klaassen R. H., Strandberg R., Vega M. L., Dasari H. P., Araújo M. B., Wikelski M., and Rahbek C.. 2017. Resource tracking within and across continents in long‐distance bird migrants. Sci. Adv. 3:e1601360. PubMed PMC
Voipio, P. 1970. On “the thunder flights” in the House Martin. Ornis Fenn. 47:15–19.
Weitnauer, E. 1975. Lebensdauer, Partenertreue, Ortstreue sowie Fernfunde beringter Mauersegler, Apus apus . Orn. Beob. 72:87–100.
Wellbrock, A. H. J. , Bauch C., Rozman J., and Witte K.. 2017. ‘Same procedure as last year?’ Repeatedly tracked swifts show individual consistency in migration pattern in successive years. J. Avian Biol. 48:897–903.
Pennycuick, C. J. 1989. Bird flight performance, Oxford: Oxford University Press.
Dryad
10.5061/dryad.cz8w9gj1w