• This record comes from PubMed

Cool birds: first evidence of energy-saving nocturnal torpor in free-living common swifts Apus apus resting in their nests

. 2022 Apr ; 18 (4) : 20210675. [epub] 20220413

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Daily torpor is a means of saving energy by controlled lowering of the metabolic rate (MR) during resting, usually coupled with a decrease in body temperature. We studied nocturnal daily torpor under natural conditions in free-living common swifts Apus apus resting in their nests as a family using two non-invasive approaches. First, we monitored nest temperature (Tnest) in up to 50 occupied nests per breeding season in 2010-2015. Drops in Tnest were the first indication of torpor. Among 16 673 observations, we detected 423 events of substantial drops in Tnest of on average 8.6°C. Second, we measured MR of the families inside nest-boxes prepared for calorimetric measurements during cold periods in the breeding seasons of 2017 and 2018. We measured oxygen consumption and carbon dioxide production using a mobile indirect respirometer and calculated the percentage reduction in MR. During six torpor events observed, MR was gradually reduced by on average 56% from the reference value followed by a decrease in Tnest of on average 7.6°C. By contrast, MR only decreased by about 33% on nights without torpor. Our field data gave an indication of daily torpor, which is used as a strategy for energy saving in free-living common swifts.

See more in PubMed

Heldmaier G, Ortmann S, Elvert R. 2004. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317-329. (10.1016/j.resp.2004.03.014) PubMed DOI

Green SR, Al-Attar R, McKechnie AE, Naidoo S, Storey KB. 2020. Role of Akt signaling pathway regulation in the speckled mousebird (Colius striatus) during torpor displays tissue specific responses. Cell. Signal. 70, 109763. (10.1016/j.cellsig.2020.109763) PubMed DOI

Prinzinger R, Preßmar A, Schleucher E. 1991. Body temperature in birds. Comp. Biochem. Physiol. 99A, 499-506. (10.1016/0300-9629(91)90122-S) DOI

Geiser F, Ruf T. 1995. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol. Zool. 68, 935-966. (10.1086/physzool.68.6.30163788) DOI

McKechnie AE, Lovegrove BG. 2002. Avian facultative hypothermic responses: a review. Condor 104, 705-724. (10.1093/condor/104.4.705) DOI

Ruf T, Geiser F. 2015. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891-926. (10.1111/brv.12137) PubMed DOI PMC

Geiser F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239-274. (10.1146/annurev.physiol.66.032102.115105) PubMed DOI

Geiser F. 2019. Frequent nocturnal torpor in a free-ranging Australian honeyeater, the noisy miner. Sci. Nat. 106, 28. (10.1007/s00114-019-1626-9) PubMed DOI

Geiser F. 2020. Seasonal expression of avian and mammalian daily torpor and hibernation: not a simple summer-winter affair. Front. Physiol. 11, 436. (10.3389/fphys.2020.00436) PubMed DOI PMC

Wolf BO, McKechnie AE, Schmitt CJ, Czenze ZJ, Johnson AB, Witt CC. 2020. Extreme and variable torpor among high-elevation Andean hummingbird species. Biol. Lett. 16, 20200428. (10.1098/rsbl.2020.0428) PubMed DOI PMC

Geiser F, Brigham RM. 2012. The other functions of torpor. In Living in a seasonal world (eds Ruf T, Bieber C, Arnold W, Millesi E), pp. 109-122. Berlin, Germany: Springer.

Nowack J, Stawski C, Geiser F. 2017. More functions of torpor and their roles in a changing world. J. Comp. Physiol. B 187, 889-897. (10.1007/s00360-017-1100-y) PubMed DOI PMC

Doucette LI, Brigham RM, Pavey CR, Geiser F. 2012. Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia 169, 361-372. (10.1007/s00442-011-2214-7) PubMed DOI

Hohtola E. 2012. Thermoregulatory adaptations to starvation in birds. In Comparative physiology of fasting, starvation, and food limitation (ed. McCue MD), pp. 155-170. Berlin, Germany: Springer.

McKechnie AE, Lovegrove BG. 2001. Thermoregulation and the energetic significance of clustering behavior in the white-backed mousebird (Colius colius). Physiol. Biochem. Zool. 74, 238-249. (10.1086/319669) PubMed DOI

McKechnie AE, Lovegrove BG. 2001. Heterothermic responses in the speckled mousebird (Colius striatus). J. Comp. Physiol. B 171, 507-518. (doi:0.1007/s003600100201) PubMed

McNab BK, Weston KA. 2018. The energetics of torpor in a temperate passerine endemic to New Zealand, the rifleman (Acanthisitta chloris). J. Comp. Physiol. B 188, 855-862. (10.1007/s00360-018-1175-0) PubMed DOI

McNab BK, Weston KA. 2020. Does the New Zealand rockwren (Xenicus gilviventris) hibernate? J. Exp. Biol. 223, jeb212126. (10.1242/jeb.212126) PubMed DOI

Fletcher QE, Fisher RJ, Willis CKR, Brigham RM. 2004. Free-ranging common nighthawks use torpor. J. Therm. Biol. 29, 9-14. (10.1016/j.jtherbio.2003.11.004) DOI

Lane JE, Brigham RM, Swanson DL. 2004. Daily torpor in free-ranging whip-poor-wills (Caprimulgus vociferus). Physiol. Biochem. Zool. 77, 297-304. (10.1086/380210) PubMed DOI

McAllan BM, Geiser F. 2014. Torpor during reproduction in mammals and birds: dealing with an energetic conundrum. Integr. Comp. Biol. 54, 516-532. (10.1093/icb/icu093) PubMed DOI

Peiponen VA. 1965. On hypothermia and torpidity in the nightjar (Caprimulgus europaeus L). Ann. Acad. Sci. Fenn. Biol. 87, 1-15.

Bize P, Klopfenstein A, Jeanneret C, Roulin A. 2007. Intra-individual variation in body temperature and pectoral muscle size in nestling Alpine swifts Apus melba in response to an episode of inclement weather. J. Ornithol. 148, 387-393. (10.1007/s10336-007-0141-5) DOI

Åkesson S, Klaassen R, Holmgren J, Fox JW, Hedenström A. 2012. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. PLoS ONE 7, e41195. (10.1371/journal.pone.0041195) PubMed DOI PMC

Wellbrock AHJ, Bauch C, Rozman J, Witte K. 2017. ‘Same procedure as last year?‘ Repeatedly tracked swifts show individual consistency in migration pattern in successive years. J. Avian Biol. 48, 897-903. (10.1111/jav.01251) DOI

Åkesson S, et al. 2020. Evolution of chain migration in an aerial insectivorous bird, the common swift Apus apus. Evolution 74, 2377-2391. (10.1111/evo.14093) PubMed DOI PMC

Lack D. 1956. Swifts in a tower. London, UK: Methuen & Co Ltd.

Weitnauer E. 1980. Mein Vogel – Aus dem Leben des Mauerseglers Apus apus. Liestal, Switzerland: Basellandschaftlicher Natur- und Vogelschutzverband.

Koskimies J. 1948. On temperature regulation and metabolism in the swift, Micropus apus L., during fasting. Experientia 4, 274-276. (10.1007/BF02164408) PubMed DOI

Koskimies J. 1950. The life of the swift, Micropus apus (L.), in relation to the weather. Ann. Acad. Sci. Fenn. A IV, 1-151.

Koskimies J. 1961. Fakultative Kältelethargie beim Mauersegler (Apus apus) im Spätherbst [in German with English summary]. Vogelwarte 22, 161-166.

Keskpaik J. 1973. Ontogenetic development of torpid cycle in the European swifts (Apus a. apus L.) [in Russian with English summary]. Eesti Nsv Tead. Akad. TOIM Biol. 22, 113-121.

Willis CKR, Goldzieher A, Geiser F. 2005. A non-invasive method for quantifying patterns of torpor and activity under semi-natural conditions. J. Therm. Biol. 30, 551-556. (10.1016/j.jtherbio.2005.07.001) DOI

Weidinger K. 2006. Validating the use of temperature data loggers to measure survival of songbird nests. J. Field Ornithol. 77, 357-364. (10.1111/j.1557-9263.2006.00063.x) DOI

Hartmann CA, Oring LW. 2006. An inexpensive method for remotely monitoring nest activity. J. Field Ornithol. 77, 418-424. (10.1111/j.1557-9263.2006.00073.x) DOI

Moore T, de Tores P, Fleming PA. 2010. Detecting, but not affecting, nest-box occupancy. Wildl. Res. 37, 240-248. (10.1071/WR09111) DOI

Cervencl A, Esser W, Maier M, Oberdiek N, Thyen S, Wellbrock A, Exo KM. 2011. Can differences in incubation patterns of common redshanks Tringa totanus be explained by variations in predation risk? J. Ornithol. 152, 1033-1043. (10.1007/s10336-011-0696-z) DOI

Barclay RMR, Lausen CL, Hollis L. 2001. What's hot and what's not: defining torpor in free-ranging birds and mammals. Can. J. Zool. 79, 1885-1890. (10.1139/z01-138) DOI

Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G. 2004. Hibernation in a tropical primate. Nature 429, 825-826. (10.1038/429825a) PubMed DOI

Canale CI, Levesque DL, Lovegrove BG. 2012. Tropical heterothermy: does the exception prove the rule or force a re-definition? In Living in a seasonal world (eds Ruf T, Bieber C, Arnold W, Millesi E), pp. 29-40. Berlin, Germany: Springer.

PhenoSys. 2020. Indirect Calorimetry. CaloBox. See https://www.phenosys.com/wp-content/uploads/2019/10/PhenoSys_Brochure_CaloBox_1910.pdf.

Schaub T, Wellbrock AHJ, Rozman J, Witte K. 2019. Light data from geolocation reveal patterns of nest visit frequency and suitable conditions for efficient nest site monitoring in common swifts Apus apus. Bird Study 66, 519-530. (10.1080/00063657.2020.1732862) DOI

Spence AR, Tingle MW. 2021. Body size and environment influence both intraspecific and interspecific variation in daily torpor use across hummingbirds. Funct. Ecol. 35, 870-883. (10.1111/1365-2435.13782) DOI

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48. (10.18637/jss.v067.i01) DOI

Lüdecke D. 2020. sjPlot: data visualization for statistics in social science. R package version 2.8.6. See https://CRAN.R-project.org/package=sjPlot.

Korner-Nievergelt F, Roth T, von Felten S, Guélat J, Almasi B, Korner-Nievergelt P. 2015. Bayesian data analysis in ecology using linear models with R, BUGS, and Stan. Amsterdam, The Netherlands: Academic Press.

R Development Core Team. 2020. R: a language and environment for statistical computing. Version. 4.0.3. Vienna, Austria: R Foundation for Statistical Computing.

Jerem P, Jenni-Eiermann S, Herborn K, McKeegan D, McCaferty D, Nager R. 2018. Eye region surface temperature reflects both energy reserves and circulating glucocorticoids in a wild bird. Sci. Rep. 8, 1907. (10.1038/s41598-018-20240-4) PubMed DOI PMC

Linek N, Volkmer T, Shipley JR, Twining CW, Zúñiga D, Wikelski M, Partecke J. 2021. A songbird adjusts its heart rate and body temperature in response to season and fluctuating daily conditions. Phil. Trans. R. Soc. B 376, 20200213. (10.1098/rstb.2020.0213) PubMed DOI PMC

Vuarin P, Dammhahn M, Henry PY. 2013. Individual flexibility in energy saving: body size and condition constrain torpor use. Funct. Ecol. 27, 793-799. (10.1111/1365-2435.12069) DOI

Shipley JR, Gu DY, Salzman TC, Winkler DW. 2015. Heterothermic flexibility allows energetic savings in a small tropical swift: the silver-rumped spinetail (Rhaphidura leucopygialis). Auk 132, 697-703. (10.1642/AUK-15-15.1) DOI

McKechnie AE, Körtner G, Lovegrove BG. 2004. Rest-phase thermoregulation in free-ranging white-backed mousebirds. Condor 106, 144-150. (10.1093/condor/106.1.143) DOI

McKechnie AE, Körtner G, Lovegrove BG. 2006. Thermoregulation under semi-natural conditions in speckled mousebirds: the role of communal roosting. Afr. Zool. 41, 155-163. (10.1080/15627020.2006.11407350) DOI

Lovegrove BG, Smith GA. 2003. Is ‘nocturnal hypothermia' a valid physiological concept in small birds?: a study on bronze mannikins Spermestes cucullatus. Ibis 145, 547-557. (10.1046/j.1474-919X.2003.00166.x) DOI

Nowack J, Geiser F. 2016. Friends with benefits: the role of huddling in mixed groups of torpid and normothermic animals. J. Exp. Biol. 219, 590-596. (10.1242/jeb.128926) PubMed DOI

Jastroch M, Giroud S, Barrett P, Geiser F, Heldmaier G, Herwig A. 2016. Seasonal control of mammalian energy balance: recent advances in the understanding of daily torpor and hibernation. J. Neuroendocrinol. 28, e.12437. (10.1111/jne.12437) PubMed DOI

Legendre LJ, Davesne D. 2020. The evolution of mechanisms involved in vertebrate endothermy. Phil. Trans. R. Soc. B 375, 20190136. (10.1098/rstb.2019.0136) PubMed DOI PMC

Bicudo JEPW, Bianco AC, Vianna CR. 2002. Adaptive thermogenesis in hummingbirds. J. Exp. Biol. 205, 2267-2273. (10.1242/jeb.205.15.2267) PubMed DOI

Nowack J, Giroud S, Arnold W, Ruf T. 2017. Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Front. Physiol. 8, 889. (10.3389/fphys.2017.00889) PubMed DOI PMC

Bal NC, Periasamy M. 2020. Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis. Phil. Trans. R. Soc. B 375, 20190135. (10.1098/rstb.2019.0135) PubMed DOI PMC

Grüebler MU, Morand M, Naef-Daenzer B. 2008. A predictive model of the density of airborne insects in agricultural environments. Agric. Ecosyst. Environ. 123, 75-80. (10.1016/j.agee.2007.05.001) DOI

Ruuskanen S, Hsu BY, Nord A. 2021. Endocrinology of thermoregulation in birds in a changing climate. Mol. Cell. Endocrinol. 519, 111088. (10.1016/j.mce.2020.111088) PubMed DOI

Wellbrock AHJ, Eckhardt LRH, Kelsey NA, Heldmaier G, Rozman J, Witte K. 2022. Data from: Cool birds: first evidence of energy-saving nocturnal torpor in free-living common swifts Apus apus resting in their nests. Dryad Digital Repository. (10.5061/dryad.6wwpzgn1f) PubMed DOI PMC

Wellbrock AHJ, Eckhardt LRH, Kelsey NA, Heldmaier G, Rozman J, Witte K. 2022. Cool birds: first evidence of energy-saving nocturnal torpor in free-living common swifts Apus apus resting in their nests. FigShare. (10.6084/m9.figshare.c.5918312) PubMed DOI PMC

See more in PubMed

Dryad
10.5061/dryad.6wwpzgn1f

figshare
10.6084/m9.figshare.c.5918312

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...