Effect of Star-like Polymer on Mechanical Properties of Novel Basalt Fibre-Reinforced Composite with Bio-Based Matrix

. 2024 Oct 16 ; 16 (20) : . [epub] 20241016

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39458737

Grantová podpora
S-MIP-23-134 Lietuvos Mokslo Taryba

This study is aimed at developing a fibre-reinforced polymer composite with a high bio-based content and to investigate its mechanical properties. A novel basalt fibre-reinforced polymer (BFRP) composite with bio-based matrix modified with different contents of star-like n-butyl methacrylate (n-BMA) block glycidyl methacrylate (GMA) copolymer has been developed. n-BMA blocks have flexible butyl units, while the epoxide group of GMA makes it miscible with the epoxy resin and is involved in the crosslinking network. The effect of the star-like polymer on the rheological behaviour of the epoxy was studied. The viscosity of the epoxy increased with increase in star-like polymer content. Tensile tests showed no noteworthy influence of star-like polymer on tensile properties. The addition of 0.5 wt.% star-like polymer increased the glass transition temperature by 8.2 °C. Mode-I interlaminar fracture toughness and low-velocity impact tests were performed on star-like polymer-modified BFRP laminates, where interfacial adhesion and impact energy capabilities were observed. Interlaminar fracture toughness improved by 45% and energy absorption capability increased threefold for BFRP laminates modified with 1 wt.% of star-like polymer when compared to unmodified BFRP laminates. This improvement could be attributed to the increase in ductility of the matrix on the addition of the star-like polymer, increasing resistance to impact and damage. Furthermore, scanning electron microscopy confirmed that with increase in star-like polymer content, the interfacial adhesion between the matrix and fibres improves.

Zobrazit více v PubMed

Singha K. A Short Review on Basalt Fiber. Int. J. Text. Sci. 2012;4:19–28.

Bhatt P., Goe A. Carbon fibres: Production, properties and potential use. Mater. Sci. Res. India. 2017;14:52–57. doi: 10.13005/msri/140109. DOI

Hancu B.D., Pop M. Assessment of health effects related to fiber glass exposure in fiber glass workers: Exhaled biomarkers eCO, FENO and their usefulness in the occupational environment testing. Clujul Med. 2013;86:114–116. PubMed PMC

Barbarino M., Giordano A. Assessment of the Carcinogenicity of Carbon Nanotubes in the Respiratory System. Cancers. 2021;13:1318. doi: 10.3390/cancers13061318. PubMed DOI PMC

Fiore V., Scalici T., Di Bella G., Valenza A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015;74:74–94. doi: 10.1016/j.compositesb.2014.12.034. DOI

Meyer L.O., Schulte K., Grove-Nielsen E. CFRP-Recycling Following a Pyrolysis Route: Process Optimization and Potentials. J. Compos. Mater. 2009;43:1121–1132. doi: 10.1177/0021998308097737. DOI

Dauguet M., Mantaux O., Perry N., Zhao Y.F. Recycling of CFRP for High Value Applications: Effect of Sizing Removal and Environmental Analysis of the SuperCritical Fluid Solvolysis. Procedia CIRP. 2015;29:734–739. doi: 10.1016/j.procir.2015.02.064. DOI

Deng J., Xu L., Zhang L., Peng J., Guo S., Liu J., Koppala S. Recycling of Carbon Fibers from CFRP Waste by Microwave Thermolysis. Processes. 2019;7:207. doi: 10.3390/pr7040207. DOI

More A.P. Flax fiber–based polymer composites: A review. Adv. Compos. Hybrid Mater. 2022;5:1–20. doi: 10.1007/s42114-021-00246-9. DOI

Shahzad A. Hemp fiber and its composites—A review. J. Compos. Mater. 2012;46:973–986. doi: 10.1177/0021998311413623. DOI

Chandekar H., Chaudhari V., Waigaonkar S. A review of jute fiber reinforced polymer composites. Mater. Today Proc. 2020;26:2079–2082. doi: 10.1016/j.matpr.2020.02.449. DOI

Väisänen T., Das O., Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017;149:582–596. doi: 10.1016/j.jclepro.2017.02.132. DOI

Chaishome J., Rattanapaskorn S. The influence of alkaline treatment on thermal stability of flax fibres. IOP Conf. Ser. Mater. Sci. Eng. 2017;191:012007. doi: 10.1088/1757-899X/191/1/012007. DOI

Mwaikambo L.Y., Ansell M.P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J. Mater. Sci. 2006;41:2483–2496. doi: 10.1007/s10853-006-5098-x. DOI

Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI

Li Z., Xiao T., Pan Q., Cheng J., Zhao S. Corrosion behaviour and mechanism of basalt fibres in acidic and alkaline environments. Corros. Sci. 2016;110:15–22. doi: 10.1016/j.corsci.2016.04.019. DOI

Azimpour-Shishevan F., Akbulut H., Mohtadi-Bonab M.A. Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites. Bull. Mater. Sci. 2020;43:88. doi: 10.1007/s12034-020-2059-y. DOI

Chowdhury I.R., Pemberton R., Summerscales J. Developments and Industrial Applications of Basalt Fibre Reinforced Composite Materials. J. Compos. Sci. 2022;6:367. doi: 10.3390/jcs6120367. DOI

Matykiewicz D., Lewandowski K., Dudziec B. Evaluation of thermomechanical properties of epoxy–basalt fibre composites modified with zeolite and silsesquioxane. Compos. Interfaces. 2017;24:489–498. doi: 10.1080/09276440.2016.1235905. DOI

Jia H., Liu C., Zhang Y., Qiao Y., Zhao W., Chen X., Jian X. Electrophoretic deposition for the interfacial enhancement of BF/PPENK composite: GO vs. Ti3C2Tx MXene. Compos. Part Appl. Sci. Manuf. 2024;181:108115. doi: 10.1016/j.compositesa.2024.108115. DOI

Chen W., Shen H., Auad M.L., Huang C., Nutt S. Basalt fiber–epoxy laminates with functionalized multi-walled carbon nanotubes. Compos. Part Appl. Sci. Manuf. 2009;40:1082–1089. doi: 10.1016/j.compositesa.2009.04.027. DOI

Sukur E.F., Onal G. Graphene nanoplatelet modified basalt/epoxy multi-scale composites with improved tribological performance. Wear. 2020;460–461:203481. doi: 10.1016/j.wear.2020.203481. DOI

Patil R.A., Aloorkar N.H., Kulkarni A.S., Ingale D.J. Star Polymers: An Overview. Int. J. Pharm. Sci. Nanotechnol. 2012;5:1675–1684. doi: 10.37285/ijpsn.2012.5.2.3. DOI

Aboelanin H.M., Podzimek S., Spacek V. Synthesis and molecular structure of highly compact star-like poly(methyl methacrylate) and poly(butyl methacrylate) Eur. Polym. J. 2023;194:112119. doi: 10.1016/j.eurpolymj.2023.112119. DOI

Pinto R., Monastyreckis G., Aboelanin H.M., Spacek V., Zeleniakiene D. Mechanical properties of carbon fibre reinforced composites modified with star-shaped butyl methacrylate. J. Compos. Mater. 2022;56:951–959. doi: 10.1177/00219983211065206. DOI

Ma Y., Yang Y., Sugahara T., Hamada H. A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Compos. Part B Eng. 2016;99:162–172. doi: 10.1016/j.compositesb.2016.06.005. DOI

Ramakrishna M., Girigoswami A., Chakraborty S., Girigoswami K. Bisphenol A-an Overview on its Effect on Health and Environment. Biointerface Res. Appl. Chem. 2021;12:105–119. doi: 10.33263/BRIAC121.105119. DOI

Tkachuk A.I., Zagora A.G., Terekhov I.V., Mukhametov R.R. Isophorone Diamine—A Curing Agent for Epoxy Resins: Production, Application, Prospects. A Review. Polym. Sci. Ser. D. 2022;15:171–176. doi: 10.1134/S1995421222020289. DOI

Dornburg V., Lewandowski I., Patel M. Comparing the Land Requirements, Energy Savings, and Greenhouse Gas Emissions Reduction of Biobased Polymers and Bioenergy: An Analysis and System Extension of Life-Cycle Assessment Studies. J. Ind. Ecol. 2003;7:93–116. doi: 10.1162/108819803323059424. DOI

Gerbase A.E., Petzhold C.L., Costa A.P.O. Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J. Am. Oil Chem. Soc. 2002;79:797–802. doi: 10.1007/s11746-002-0561-z. DOI

Pin J., Sbirrazzuoli N., Mija A. From Epoxidized Linseed Oil to Bioresin: An Overall Approach of Epoxy/Anhydride Cross-Linking. ChemSusChem. 2015;8:1232–1243. doi: 10.1002/cssc.201403262. PubMed DOI

Fernandes F.C., Kirwan K., Lehane D., Coles S.R. Epoxy resin blends and composites from waste vegetable oil. Eur. Polym. J. 2017;89:449–460. doi: 10.1016/j.eurpolymj.2017.02.005. DOI

Campaner P., D’Amico D., Longo L., Stifani C., Tarzia A. Cardanol-based novolac resins as curing agents of epoxy resins. J. Appl. Polym. Sci. 2009;114:3585–3591. doi: 10.1002/app.30979. DOI

Andrew J.J., Dhakal H.N. Sustainable biobased composites for advanced applications: Recent trends and future opportunities—A critical review. Compos. Part C Open Access. 2022;7:100220. doi: 10.1016/j.jcomc.2021.100220. DOI

Saleem A., Medina L., Skrifvars M. Mechanical performance of hybrid bast and basalt fibers reinforced polymer composites. J. Polym. Res. 2020;27:61. doi: 10.1007/s10965-020-2028-6. DOI

Shishevan F.A., Akbulut H., Mohtadi-Bonab M.A. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites. J. Mater. Eng. Perform. 2017;26:2890–2900. doi: 10.1007/s11665-017-2728-1. DOI

Lopresto V., Leone C., De Iorio I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011;42:717–723. doi: 10.1016/j.compositesb.2011.01.030. DOI

Sarasini F., Tirillò J., Valente M., Valente T., Cioffi S., Iannace S., Sorrentino L. Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Compos. Part Appl. Sci. Manuf. 2013;47:109–123. doi: 10.1016/j.compositesa.2012.11.021. DOI

Almansour F.A., Dhakal H.N., Zhang Z.Y. Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Compos. Struct. 2017;168:813–825. doi: 10.1016/j.compstruct.2017.02.081. DOI

Zhao G., Li M., Wang S., Peng X., Wang L., Li X., Zhao Y., Gao Y., Zhang Y., Zheng J. Effect of interlaminar basalt fiber veil reinforcement on mode I fracture toughness of basalt fiber composites. Polym. Compos. 2024;45:4985–4993. doi: 10.1002/pc.28103. DOI

Don D.K., Reiner J., Jennings M., Subhani M. Basalt Fibre-Reinforced Polymer Laminates with Eco-Friendly Bio Resin: A Comparative Study of Mechanical and Fracture Properties. Polymers. 2024;16:2056. doi: 10.3390/polym16142056. PubMed DOI PMC

Hameed N., Guo Q., Xu Z., Hanley T.L., Mai Y.-W. Reactive block copolymer modified thermosets: Highly ordered nanostructures and improved properties. Soft Matter. 2010;6:6119. doi: 10.1039/c0sm00480d. DOI

Standard Test Method for Tensile Properties of Plastics. ASTM International; West Conshohocken, PA, USA: 2014. DOI

Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures. ASTM International; West Conshohocken, PA, USA: 2020. DOI

D30 Committee Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International; West Conshohocken, PA, USA: 2022. DOI

Plastics—Determination of Puncture Impact Behaviour of Rigid Plastics Part 2: Instrumented Impact Testing. International Organization for Standardization; Vernier, Switzerland: 2023.

Plastics—Determination of Tensile Properties Part 1: General Principles. International Organization for Standardization; Vernier, Switzerland: 2019.

Shokrieh M.M., Heidari-Rarani M., Ayatollahi M.R. Interlaminar fracture toughness of unidirectional DCB specimens: A novel theoretical approach. Polym. Test. 2012;31:68–75. doi: 10.1016/j.polymertesting.2011.08.012. DOI

Michels J., Widmann R., Czaderski C., Allahvirdizadeh R., Motavalli M. Glass transition evaluation of commercially available epoxy resins used for civil engineering applications. Compos. Part B Eng. 2015;77:484–493. doi: 10.1016/j.compositesb.2015.03.053. DOI

ISO 6721-11 [(accessed on 2 October 2024)];Plastics—Determination of Dynamic Mechanical Properties—Part 1: General Principles. Available online: https://www.iso.org/standard/73142.html.

Karvanis K., Rusnáková S., Krejčí O., Žaludek M. Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites. Polymers. 2020;12:1785. doi: 10.3390/polym12081785. PubMed DOI PMC

Zheng X., Guo Y., Douglas J.F., Xia W. Understanding the role of cross-link density in the segmental dynamics and elastic properties of cross-linked thermosets. J. Chem. Phys. 2022;157:064901. doi: 10.1063/5.0099322. PubMed DOI

Starkova O., Buschhorn S.T., Mannov E., Schulte K., Aniskevich A. Water transport in epoxy/MWCNT composites. Eur. Polym. J. 2013;49:2138–2148. doi: 10.1016/j.eurpolymj.2013.05.010. DOI

Glaskova-Kuzmina T., Aniskevich A., Sevcenko J., Borriello A., Zarrelli M. Cyclic Moisture Sorption and its Effects on the Thermomechanical Properties of Epoxy and Epoxy/MWCNT Nanocomposite. Polymers. 2019;11:1383. doi: 10.3390/polym11091383. PubMed DOI PMC

De Morais A.B. A new fibre bridging based analysis of the Double Cantilever Beam (DCB) test. Compos. Part Appl. Sci. Manuf. 2011;42:1361–1368. doi: 10.1016/j.compositesa.2011.05.019. DOI

Sridharan S.B., Fangueiro R. Low velocity impact behaviour of textile reinforced composites. Indian J. Fibre Text Res. 2008;33:189–202.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...