Effect of Star-like Polymer on Mechanical Properties of Novel Basalt Fibre-Reinforced Composite with Bio-Based Matrix
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
S-MIP-23-134
Lietuvos Mokslo Taryba
PubMed
39458737
PubMed Central
PMC11511385
DOI
10.3390/polym16202909
PII: polym16202909
Knihovny.cz E-zdroje
- Klíčová slova
- basalt fibre, bio-based matrix, mechanical properties, star-like polymer,
- Publikační typ
- časopisecké články MeSH
This study is aimed at developing a fibre-reinforced polymer composite with a high bio-based content and to investigate its mechanical properties. A novel basalt fibre-reinforced polymer (BFRP) composite with bio-based matrix modified with different contents of star-like n-butyl methacrylate (n-BMA) block glycidyl methacrylate (GMA) copolymer has been developed. n-BMA blocks have flexible butyl units, while the epoxide group of GMA makes it miscible with the epoxy resin and is involved in the crosslinking network. The effect of the star-like polymer on the rheological behaviour of the epoxy was studied. The viscosity of the epoxy increased with increase in star-like polymer content. Tensile tests showed no noteworthy influence of star-like polymer on tensile properties. The addition of 0.5 wt.% star-like polymer increased the glass transition temperature by 8.2 °C. Mode-I interlaminar fracture toughness and low-velocity impact tests were performed on star-like polymer-modified BFRP laminates, where interfacial adhesion and impact energy capabilities were observed. Interlaminar fracture toughness improved by 45% and energy absorption capability increased threefold for BFRP laminates modified with 1 wt.% of star-like polymer when compared to unmodified BFRP laminates. This improvement could be attributed to the increase in ductility of the matrix on the addition of the star-like polymer, increasing resistance to impact and damage. Furthermore, scanning electron microscopy confirmed that with increase in star-like polymer content, the interfacial adhesion between the matrix and fibres improves.
Institute for Mechanics of Materials University of Latvia Jelgavas 3 LV 1004 Riga Latvia
Institute of Materials and Structures Riga Technical University Kipsalas 6a LV 1048 Riga Latvia
Zobrazit více v PubMed
Singha K. A Short Review on Basalt Fiber. Int. J. Text. Sci. 2012;4:19–28.
Bhatt P., Goe A. Carbon fibres: Production, properties and potential use. Mater. Sci. Res. India. 2017;14:52–57. doi: 10.13005/msri/140109. DOI
Hancu B.D., Pop M. Assessment of health effects related to fiber glass exposure in fiber glass workers: Exhaled biomarkers eCO, FENO and their usefulness in the occupational environment testing. Clujul Med. 2013;86:114–116. PubMed PMC
Barbarino M., Giordano A. Assessment of the Carcinogenicity of Carbon Nanotubes in the Respiratory System. Cancers. 2021;13:1318. doi: 10.3390/cancers13061318. PubMed DOI PMC
Fiore V., Scalici T., Di Bella G., Valenza A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015;74:74–94. doi: 10.1016/j.compositesb.2014.12.034. DOI
Meyer L.O., Schulte K., Grove-Nielsen E. CFRP-Recycling Following a Pyrolysis Route: Process Optimization and Potentials. J. Compos. Mater. 2009;43:1121–1132. doi: 10.1177/0021998308097737. DOI
Dauguet M., Mantaux O., Perry N., Zhao Y.F. Recycling of CFRP for High Value Applications: Effect of Sizing Removal and Environmental Analysis of the SuperCritical Fluid Solvolysis. Procedia CIRP. 2015;29:734–739. doi: 10.1016/j.procir.2015.02.064. DOI
Deng J., Xu L., Zhang L., Peng J., Guo S., Liu J., Koppala S. Recycling of Carbon Fibers from CFRP Waste by Microwave Thermolysis. Processes. 2019;7:207. doi: 10.3390/pr7040207. DOI
More A.P. Flax fiber–based polymer composites: A review. Adv. Compos. Hybrid Mater. 2022;5:1–20. doi: 10.1007/s42114-021-00246-9. DOI
Shahzad A. Hemp fiber and its composites—A review. J. Compos. Mater. 2012;46:973–986. doi: 10.1177/0021998311413623. DOI
Chandekar H., Chaudhari V., Waigaonkar S. A review of jute fiber reinforced polymer composites. Mater. Today Proc. 2020;26:2079–2082. doi: 10.1016/j.matpr.2020.02.449. DOI
Väisänen T., Das O., Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017;149:582–596. doi: 10.1016/j.jclepro.2017.02.132. DOI
Chaishome J., Rattanapaskorn S. The influence of alkaline treatment on thermal stability of flax fibres. IOP Conf. Ser. Mater. Sci. Eng. 2017;191:012007. doi: 10.1088/1757-899X/191/1/012007. DOI
Mwaikambo L.Y., Ansell M.P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J. Mater. Sci. 2006;41:2483–2496. doi: 10.1007/s10853-006-5098-x. DOI
Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI
Li Z., Xiao T., Pan Q., Cheng J., Zhao S. Corrosion behaviour and mechanism of basalt fibres in acidic and alkaline environments. Corros. Sci. 2016;110:15–22. doi: 10.1016/j.corsci.2016.04.019. DOI
Azimpour-Shishevan F., Akbulut H., Mohtadi-Bonab M.A. Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites. Bull. Mater. Sci. 2020;43:88. doi: 10.1007/s12034-020-2059-y. DOI
Chowdhury I.R., Pemberton R., Summerscales J. Developments and Industrial Applications of Basalt Fibre Reinforced Composite Materials. J. Compos. Sci. 2022;6:367. doi: 10.3390/jcs6120367. DOI
Matykiewicz D., Lewandowski K., Dudziec B. Evaluation of thermomechanical properties of epoxy–basalt fibre composites modified with zeolite and silsesquioxane. Compos. Interfaces. 2017;24:489–498. doi: 10.1080/09276440.2016.1235905. DOI
Jia H., Liu C., Zhang Y., Qiao Y., Zhao W., Chen X., Jian X. Electrophoretic deposition for the interfacial enhancement of BF/PPENK composite: GO vs. Ti3C2Tx MXene. Compos. Part Appl. Sci. Manuf. 2024;181:108115. doi: 10.1016/j.compositesa.2024.108115. DOI
Chen W., Shen H., Auad M.L., Huang C., Nutt S. Basalt fiber–epoxy laminates with functionalized multi-walled carbon nanotubes. Compos. Part Appl. Sci. Manuf. 2009;40:1082–1089. doi: 10.1016/j.compositesa.2009.04.027. DOI
Sukur E.F., Onal G. Graphene nanoplatelet modified basalt/epoxy multi-scale composites with improved tribological performance. Wear. 2020;460–461:203481. doi: 10.1016/j.wear.2020.203481. DOI
Patil R.A., Aloorkar N.H., Kulkarni A.S., Ingale D.J. Star Polymers: An Overview. Int. J. Pharm. Sci. Nanotechnol. 2012;5:1675–1684. doi: 10.37285/ijpsn.2012.5.2.3. DOI
Aboelanin H.M., Podzimek S., Spacek V. Synthesis and molecular structure of highly compact star-like poly(methyl methacrylate) and poly(butyl methacrylate) Eur. Polym. J. 2023;194:112119. doi: 10.1016/j.eurpolymj.2023.112119. DOI
Pinto R., Monastyreckis G., Aboelanin H.M., Spacek V., Zeleniakiene D. Mechanical properties of carbon fibre reinforced composites modified with star-shaped butyl methacrylate. J. Compos. Mater. 2022;56:951–959. doi: 10.1177/00219983211065206. DOI
Ma Y., Yang Y., Sugahara T., Hamada H. A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Compos. Part B Eng. 2016;99:162–172. doi: 10.1016/j.compositesb.2016.06.005. DOI
Ramakrishna M., Girigoswami A., Chakraborty S., Girigoswami K. Bisphenol A-an Overview on its Effect on Health and Environment. Biointerface Res. Appl. Chem. 2021;12:105–119. doi: 10.33263/BRIAC121.105119. DOI
Tkachuk A.I., Zagora A.G., Terekhov I.V., Mukhametov R.R. Isophorone Diamine—A Curing Agent for Epoxy Resins: Production, Application, Prospects. A Review. Polym. Sci. Ser. D. 2022;15:171–176. doi: 10.1134/S1995421222020289. DOI
Dornburg V., Lewandowski I., Patel M. Comparing the Land Requirements, Energy Savings, and Greenhouse Gas Emissions Reduction of Biobased Polymers and Bioenergy: An Analysis and System Extension of Life-Cycle Assessment Studies. J. Ind. Ecol. 2003;7:93–116. doi: 10.1162/108819803323059424. DOI
Gerbase A.E., Petzhold C.L., Costa A.P.O. Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J. Am. Oil Chem. Soc. 2002;79:797–802. doi: 10.1007/s11746-002-0561-z. DOI
Pin J., Sbirrazzuoli N., Mija A. From Epoxidized Linseed Oil to Bioresin: An Overall Approach of Epoxy/Anhydride Cross-Linking. ChemSusChem. 2015;8:1232–1243. doi: 10.1002/cssc.201403262. PubMed DOI
Fernandes F.C., Kirwan K., Lehane D., Coles S.R. Epoxy resin blends and composites from waste vegetable oil. Eur. Polym. J. 2017;89:449–460. doi: 10.1016/j.eurpolymj.2017.02.005. DOI
Campaner P., D’Amico D., Longo L., Stifani C., Tarzia A. Cardanol-based novolac resins as curing agents of epoxy resins. J. Appl. Polym. Sci. 2009;114:3585–3591. doi: 10.1002/app.30979. DOI
Andrew J.J., Dhakal H.N. Sustainable biobased composites for advanced applications: Recent trends and future opportunities—A critical review. Compos. Part C Open Access. 2022;7:100220. doi: 10.1016/j.jcomc.2021.100220. DOI
Saleem A., Medina L., Skrifvars M. Mechanical performance of hybrid bast and basalt fibers reinforced polymer composites. J. Polym. Res. 2020;27:61. doi: 10.1007/s10965-020-2028-6. DOI
Shishevan F.A., Akbulut H., Mohtadi-Bonab M.A. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites. J. Mater. Eng. Perform. 2017;26:2890–2900. doi: 10.1007/s11665-017-2728-1. DOI
Lopresto V., Leone C., De Iorio I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011;42:717–723. doi: 10.1016/j.compositesb.2011.01.030. DOI
Sarasini F., Tirillò J., Valente M., Valente T., Cioffi S., Iannace S., Sorrentino L. Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Compos. Part Appl. Sci. Manuf. 2013;47:109–123. doi: 10.1016/j.compositesa.2012.11.021. DOI
Almansour F.A., Dhakal H.N., Zhang Z.Y. Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Compos. Struct. 2017;168:813–825. doi: 10.1016/j.compstruct.2017.02.081. DOI
Zhao G., Li M., Wang S., Peng X., Wang L., Li X., Zhao Y., Gao Y., Zhang Y., Zheng J. Effect of interlaminar basalt fiber veil reinforcement on mode I fracture toughness of basalt fiber composites. Polym. Compos. 2024;45:4985–4993. doi: 10.1002/pc.28103. DOI
Don D.K., Reiner J., Jennings M., Subhani M. Basalt Fibre-Reinforced Polymer Laminates with Eco-Friendly Bio Resin: A Comparative Study of Mechanical and Fracture Properties. Polymers. 2024;16:2056. doi: 10.3390/polym16142056. PubMed DOI PMC
Hameed N., Guo Q., Xu Z., Hanley T.L., Mai Y.-W. Reactive block copolymer modified thermosets: Highly ordered nanostructures and improved properties. Soft Matter. 2010;6:6119. doi: 10.1039/c0sm00480d. DOI
Standard Test Method for Tensile Properties of Plastics. ASTM International; West Conshohocken, PA, USA: 2014. DOI
Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures. ASTM International; West Conshohocken, PA, USA: 2020. DOI
D30 Committee Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International; West Conshohocken, PA, USA: 2022. DOI
Plastics—Determination of Puncture Impact Behaviour of Rigid Plastics Part 2: Instrumented Impact Testing. International Organization for Standardization; Vernier, Switzerland: 2023.
Plastics—Determination of Tensile Properties Part 1: General Principles. International Organization for Standardization; Vernier, Switzerland: 2019.
Shokrieh M.M., Heidari-Rarani M., Ayatollahi M.R. Interlaminar fracture toughness of unidirectional DCB specimens: A novel theoretical approach. Polym. Test. 2012;31:68–75. doi: 10.1016/j.polymertesting.2011.08.012. DOI
Michels J., Widmann R., Czaderski C., Allahvirdizadeh R., Motavalli M. Glass transition evaluation of commercially available epoxy resins used for civil engineering applications. Compos. Part B Eng. 2015;77:484–493. doi: 10.1016/j.compositesb.2015.03.053. DOI
ISO 6721-11 [(accessed on 2 October 2024)];Plastics—Determination of Dynamic Mechanical Properties—Part 1: General Principles. Available online: https://www.iso.org/standard/73142.html.
Karvanis K., Rusnáková S., Krejčí O., Žaludek M. Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites. Polymers. 2020;12:1785. doi: 10.3390/polym12081785. PubMed DOI PMC
Zheng X., Guo Y., Douglas J.F., Xia W. Understanding the role of cross-link density in the segmental dynamics and elastic properties of cross-linked thermosets. J. Chem. Phys. 2022;157:064901. doi: 10.1063/5.0099322. PubMed DOI
Starkova O., Buschhorn S.T., Mannov E., Schulte K., Aniskevich A. Water transport in epoxy/MWCNT composites. Eur. Polym. J. 2013;49:2138–2148. doi: 10.1016/j.eurpolymj.2013.05.010. DOI
Glaskova-Kuzmina T., Aniskevich A., Sevcenko J., Borriello A., Zarrelli M. Cyclic Moisture Sorption and its Effects on the Thermomechanical Properties of Epoxy and Epoxy/MWCNT Nanocomposite. Polymers. 2019;11:1383. doi: 10.3390/polym11091383. PubMed DOI PMC
De Morais A.B. A new fibre bridging based analysis of the Double Cantilever Beam (DCB) test. Compos. Part Appl. Sci. Manuf. 2011;42:1361–1368. doi: 10.1016/j.compositesa.2011.05.019. DOI
Sridharan S.B., Fangueiro R. Low velocity impact behaviour of textile reinforced composites. Indian J. Fibre Text Res. 2008;33:189–202.