Experimental Study on the Optimization of the Autoclave Curing Cycle for the Enhancement of the Mechanical Properties of Prepreg Carbon-Epoxy Laminates

. 2023 Dec 22 ; 16 (1) : . [epub] 20231222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38201712

Grantová podpora
IGA/FT/2023/004 Tomas Bata University in Zlín

In this study, the influence of the technological parameters of autoclave curing on the resulting mechanical properties of laminates was investigated. The main criterion for optimizing the curing was to extend the processing window with a lower prepreg viscosity. At the same time, the issue of setting the pressure level before the heat ramp to the final cure temperature was also addressed. An experimental method of measuring the indentation viscosity of the prepreg was used to determine the viscosity profile. Despite the experimental nature of the method, the reliability of this method for rapid approximate identification of the processing window of the prepreg was verified by the results of the study. Several laminates with the same ply orientation were produced using the selected cure cycles, from which test specimens were cut with a water jet and inspected by confocal microscopy. The mechanical properties of tension and flexure were measured within the individual curing cycles using tests according to ISO standards. The data reported demonstrate that the experimental method of optimizing the curing parameters has successfully increased the selected mechanical properties. The resulting mechanical properties of the laminates were enhanced by up to 20% compared to the non-optimized cure cycle. The influence of the type of cure cycle on the resulting thickness of the cured laminate was evaluated in this study.

Zobrazit více v PubMed

Strong A.B. Fundamentals of Composites Manufacturing: Materials, Methods and Applications. 2nd ed. Society of Manufacturing Engineers; Southfield, MI, USA: 2008.

Lengsfeld H., Lacalle J., Neumeyer T., Altstädt V. Composite Technology: Prepregs And Monolithic Part Fabrication Technologies. 2nd ed. Hanser Publishers; Munich, Germany: 2021.

Abraham D., Matthews S., McIlhagger R. A Comparison of Physical Properties of Glass Fibre Epoxy Composites Produced by Wet Lay-Up with Autoclave Consolidation and Resin Transfer Moulding. Compos. Part A Appl. Sci. Manuf. 1998;29:795–801. doi: 10.1016/S1359-835X(98)00055-4. DOI

Campbell F.C. Manufacturing Technology for Aerospace Structural Materials. Elsevier; Amsterdam, The Netherlands: 2006.

Niu M.C.-Y. Airframe Structural Design. 2nd ed. Hong Kong Conmilit Press Ltd.; Hong Kong: 1999.

Karvanis K., Rusnáková S., Krejčí O., Žaludek M. Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites. Polymers. 2020;12:1785. doi: 10.3390/polym12081785. PubMed DOI PMC

Nele L., Caggiano A., Teti R. Autoclave Cycle Optimization for High Performance Composite Parts Manufacturing. Procedia CIRP. 2016;57:241–246. doi: 10.1016/j.procir.2016.11.042. DOI

Hernández S., Sket F., González C., Lorca J. Optimization of Curing Cycle in Carbon Fiber-Reinforced Laminates: Void Distribution and Mechanical Properties. Compos. Sci. Technol. 2013;85:73–82. doi: 10.1016/j.compscitech.2013.06.005. DOI

Khan L.A., Kausar A., Day R.J. Aerospace Composite Cured by Quickstep and Autoclave Processing Techniques: Evaluation and Comparison of Reaction Progress. Aerosp. Sci. Technol. 2017;65:100–105. doi: 10.1016/j.ast.2017.02.014. DOI

De Andrade Raponi O., Barbosa L.C.M., Junior J.E.B., Junior A.C.A., Guimarães A. Effects of The Exposition of An Autoclave Prepreg to the Processing Environment on Its Properties, Curing Cycle and Final Composite Behavior. Int. J. Adv. Manuf. Technol. 2020;106:5129–5136. doi: 10.1007/s00170-020-05022-5. DOI

Liptáková T. Polymérne Konštrukčné Materiály. University of Žilina; Žilina, Slovakia: 2012.

Kořínek Z. Matrice. [(accessed on 1 October 2023)]. Available online: https://kompozity.webnode.cz/

Liu L., Zhang B.-M., Wang D.-F., Wu Z.-J. Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates. Compos. Struct. 2006;73:303–309. doi: 10.1016/j.compstruct.2005.02.001. DOI

Um M.-K., Daniel I.M., Hwang B.-S. A Study of Cure Kinetics by The Use of Dynamic Differential Scanning Calorimetry. Compos. Sci. Technol. 2002;62:29–40. doi: 10.1016/S0266-3538(01)00188-9. DOI

G. Angeloni, S.r.l. GG 204 P Woven fabric data sheet; rev 1. 2012

Impregnatex compositi S.r.l. IMP 503Z Matrix Product Data; rev 7. 2015

Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International; West Conshohocken, PA, USA: 2017.

Barbero E.J. Introduction to Composite Materials Design. 3rd ed. CRC Press; Boca Raton, FL, USA: Taylor & Francis Group; Abingdon, UK: 2018.

Hexply® Prepreg Technology. [(accessed on 29 October 2023)]. Available online: https://www.hexcel.com/user_area/content_media/raw/Prepreg_Technology.pdf.

Ehrenstein G.W. Polymerní Kompozitní Materiály. Scientia; Praga, Czech Republic: 2009. V ČR 1. vyd.

Campbell F.C. Manufacturing Processes for Advanced Composites. Elsevier; Oxford, UK: 2004.

Panini S.r.l. Autoclave Formula 1, Autoclave for Polymerization of Composite Materials. 2014

Ogunleye R.O., Rusnakova S., Zaludek M., Emebu S. The Influence of Ply Stacking Sequence on Mechanical Properties of Carbon/Epoxy Composite Laminates. Polymers. 2022;14:5566. doi: 10.3390/polym14245566. PubMed DOI PMC

Fiber-Reinforced Plastics Composites—Determination of Flexural Properties. International Organization for Standardization; Geneva, Switzerland: 1998.

Plastics—Determination of Tensile Properties, Part 4: Test Conditions for Isotropic and Orthotropic Fiber-Reinforced Plastic Composites. International Organization for Standardization; Geneva, Switzerland: 2023.

Agius S.L., Magniez K.J.C., Fox B.L. Cure Behaviour and Void Development Within Rapidly Cured Out-Of-Autoclave Composites. Compos. Part B Eng. 2013;47:230–237. doi: 10.1016/j.compositesb.2012.11.020. DOI

Ogugua C.J., Anton S.V., Tripathi A.P., Larrabeiti M.D., van Hees S.O., Sinke J., Dransfeld C.A. Energy analysis of autoclave CFRP manufacturing using thermodynamics based models. Compos. Part A Appl. Sci. Manuf. 2023;166:107365. doi: 10.1016/j.compositesa.2022.107365. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...