The Influence of Ply Stacking Sequence on Mechanical Properties of Carbon/Epoxy Composite Laminates

. 2022 Dec 19 ; 14 (24) : . [epub] 20221219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36559933

Grantová podpora
IGA/FT/2022/007 Tomas Bata University in Zlín

In this work, the effect of ply stacking sequence of carbon/epoxy laminates subjected to flexural, tensile and impact loading was investigated. Five laminates with different stacking configurations were produced using the hand-laying-up technique. This includes a unidirectional laminate, cross-ply laminates, and quasi-isotropic laminates. Following the autoclave curing process, the responses of the composites to bending, tension and impact force were determined according to ASTM standards, and their corresponding strength, stiffness as well as impact energy were evaluated. Likewise, the flexural failure mode associated with each laminate was characterised using an optical microscope. The unidirectional laminates have higher flexural and tensile strength compared to the cross-ply and quasi-isotropic laminates. Moreover, as a result of material symmetry, the flexural and tensile modulus of symmetric cross-ply laminate improved by 59.5% and 3.97% compared to the unsymmetric counterpart. Furthermore, the quasi-isotropic laminates with absorption energy of 116.2 kJ/m2 and 115.12 kJ/m2, respectively have higher impact resistance compared to other samples.

Zobrazit více v PubMed

Hallal A., Elmarakbi A., Shaito A., El-Hage H. Advanced Composite Materials for Automotive Applications. John Wiley & Sons Ltd; Chichester, UK: 2013. Overview of Composite Materials and Their Automotive Applications; pp. 1–28.

Friedrich K., Almajid A.A. Manufacturing aspects of advanced polymer composites for automotive applications. Appl. Compos. Mater. 2013;20:107–128. doi: 10.1007/s10443-012-9258-7. DOI

Rubino F., Nisticò A., Tucci F., Carlone P. Marine application of fiber reinforced composites: A review. J. Mar. Sci. Eng. 2020;8:26. doi: 10.3390/jmse8010026. DOI

Teng J.G., Yu T., Fernando D. Strengthening of steel structures with fiber-reinforced polymer composites. J. Constr. Steel Res. 2012;78:131–143. doi: 10.1016/j.jcsr.2012.06.011. DOI

Li C., Guo R., Xian G., Li H. Effects of elevated temperature, hydraulic pressure and fatigue loading on the property evolution of a carbon/glass fiber hybrid rod. Polym. Test. 2020;90:106761. doi: 10.1016/j.polymertesting.2020.106761. DOI

Jayan J.S., Appukuttan S., Wilson R., Joseph K., George G., Oksman K. Fiber Reinforced Composites. Elsevier; Amsterdam, The Netherlands: 2021. An introduction to fiber reinforced composite materials; pp. 1–24.

Dhakal H.N., MacMullen J., Zhang Z.Y. Marine Applications of Advanced Fibre-Reinforced Composites. Elsevier; Amsterdam, The Netherlands: 2016. Moisture measurement and effects on properties of marine composites; pp. 103–124.

Parisi F., Menna C., Prota A. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier; Amsterdam, The Netherlands: 2019. Fabric-Reinforced Cementitious Matrix (FRCM) composites; pp. 199–227.

Bencardino F., Nisticò M. Evaluation of the maximum strain for different steel-FRCM systems in RC beams strengthened in flexure. Fibers. 2022;10:67. doi: 10.3390/fib10080067. DOI

Mazzuca P., Firmo J.P., Correia J.R., Castilho E. Influence of elevated temperatures on the mechanical properties of glass fibre reinforced polymer laminates produced by vacuum infusion. Constr. Build. Mater. 2022;345:128340. doi: 10.1016/j.conbuildmat.2022.128340. DOI

Calabrese A.S., D’Antino T., Colombi P., Poggi C. Long-term behavior of PBO FRCM and comparison with other inorganic-matrix composites. Materials. 2022;15:3281. doi: 10.3390/ma15093281. PubMed DOI PMC

Yumnam M., Gupta H., Ghosh D., Jaganathan J. Inspection of concrete structures externally reinforced with FRP composites using active infrared thermography: A review. Constr. Build. Mater. 2021;310:125265. doi: 10.1016/j.conbuildmat.2021.125265. DOI

Katnam K.B., da Silva L.F.M., Young T.M. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog. Aerosp. Sci. 2013;61:26–42. doi: 10.1016/j.paerosci.2013.03.003. DOI

Nair S., Dasari A., Yue C., Narasimalu S. Failure behavior of unidirectional composites under compression loading: Effect of fiber waviness. Materials. 2017;10:909. doi: 10.3390/ma10080909. PubMed DOI PMC

Rout S., Nayak R.K., Patnaik S.C., Yazdani Nezhad H. Development of improved flexural and impact performance of kevlar/carbon/glass fibers reinforced polymer hybrid composites. J. Compos. Sci. 2022;6:245. doi: 10.3390/jcs6090245. DOI

Khan R.M.A., Tabrizi I.E., Ali H.Q., Demir E., Yildiz M. Investigation on interlaminar delamination tendency of multidirectional carbon fiber composites. Polym. Test. 2020;90:106653. doi: 10.1016/j.polymertesting.2020.106653. DOI

Habibi M., Selmi S., Laperrière L., Mahi H., Kelouwani S. Experimental investigation on the response of unidirectional flax fiber composites to low-velocity impact with after-impact tensile and compressive strength measurement. Compos. B Eng. 2019;171:246–253. doi: 10.1016/j.compositesb.2019.05.011. DOI

Fotouhi M., Sadeghi S., Jalalvand M., Ahmadi M. Analysis of the damage mechanisms in mixed-mode delamination of laminated composites using acoustic emission data clustering. J. Thermoplast. Compos. Mater. 2017;30:318–340. doi: 10.1177/0892705715598362. DOI

Tan R., Xu J., Sun W., Liu Z., Guan Z., Guo X. Relationship between matrix cracking and delamination in CFRP cross-ply laminates subjected to low velocity impact. Materials. 2019;12:3990. doi: 10.3390/ma12233990. PubMed DOI PMC

Caminero M.A., García-Moreno I., Rodríguez G.P. Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: Effects of laminate thickness and ply-stacking sequence. Polym. Test. 2017;63:530–541. doi: 10.1016/j.polymertesting.2017.09.016. DOI

Mlyniec A., Korta J., Kudelski R., Uhl T. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites. Compos. Struct. 2014;118:208–216. doi: 10.1016/j.compstruct.2014.07.047. DOI

Grigoriou K., Mouritz A.P. Influence of ply stacking pattern on the structural properties of quasi-isotropic carbon-epoxy laminates in fire. Compos. Part A Appl. Sci. Manuf. 2017;99:113–120. doi: 10.1016/j.compositesa.2017.04.008. DOI

Jesthi D.K., Mandal P., Rout A.K., Nayak R.K. Effect of carbon/glass fiber symmetric inter-ply sequence on mechanical properties of polymer matrix composites. Procedia Manuf. 2018;20:530–535. doi: 10.1016/j.promfg.2018.02.079. DOI

Kaboglu C., Eken T.Y., Yurekturk Y. Impact performances and failure modes of glass fiber reinforced polymers in different curvatures and stacking sequences. J. Compos. Mater. 2022;56:1123–1138. doi: 10.1177/00219983211059096. DOI

Singh K. Mahesh effect of ply position switching in quasi-isotropic glass fibre reinforced polymer composite subjected to low velocity impact. Int. J. Damage Mech. 2022;31:665–693. doi: 10.1177/10567895211068176. DOI

Giannis S., Hansen P.L., Martin R.H., Jones D.T. Mode I Quasi–Static and Fatigue Delamination Characterisation of Polymer Composites for Wind Turbine Blade Applications. Energy Materials. 2008;3:248–256. doi: 10.1179/174892409X12596773881487. DOI

Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2021.

Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2017.

Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. ASTM International; West Conshohocken, PA, USA: 2018.

Sharba M.J., Leman Z., Sultan M.T.H., Ishak M.R., Azmah Hanim M.A. Partial replacement of glass fiber by woven kenaf in hybrid composites and its effect on monotonic and fatigue properties. Bioresources. 2016;11:2665–2683. doi: 10.15376/biores.11.1.2665-2683. DOI

Parmiggiani A., Prato M., Pizzorni M. Effect of the fiber orientation on the tensile and flexural behavior of continuous carbon fiber composites made via fused filament fabrication. Int. J. Adv. Manuf. Technol. 2021;114:2085–2101. doi: 10.1007/s00170-021-06997-5. DOI

Munikenche Gowda T., Naidu A.C.B., Chhaya R. Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos. Part A Appl. Sci. Manuf. 1999;30:277–284. doi: 10.1016/S1359-835X(98)00157-2. DOI

El-Hacha R., Chen D. Behaviour of hybrid FRP–UHPC beams subjected to static flexural loading. Compos. B Eng. 2012;43:582–593. doi: 10.1016/j.compositesb.2011.07.004. DOI

Bezazi A.R., el Mahi A., Berthelot J.M., Bezzazi B. Flexural fatigue behavior of cross-ply laminates: An experimental approach. Strength Mater. 2003;35:149–161. doi: 10.1023/A:1023762528362. DOI

Sharma A., Daggumati S. Computational micromechanical modeling of transverse tensile damage behavior in unidirectional glass fiber-reinforced plastic composite plies: Ductile versus brittle fracture mechanics approach. Int. J. Damage Mech. 2020;29:943–964. doi: 10.1177/1056789519894379. DOI

Arteiro A., Catalanotti G., Melro A.R., Linde P., Camanho P.P. Micro-mechanical analysis of the in situ effect in polymer composite laminates. Compos. Struct. 2014;116:827–840. doi: 10.1016/j.compstruct.2014.06.014. DOI

Alavudeen A., Rajini N., Karthikeyan S., Thiruchitrambalam M., Venkateshwaren N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Mater. Des. 2015;66:246–257. doi: 10.1016/j.matdes.2014.10.067. DOI

Hadăr A., Baciu F., Voicu A.-D., Vlăsceanu D., Tudose D.-I., Adetu C. Mechanical characteristics evaluation of a single ply and multi-ply carbon fiber-reinforced plastic subjected to tensile and bending loads. Polymers. 2022;14:3213. doi: 10.3390/polym14153213. PubMed DOI PMC

Ginzburg D., Pinto F., Iervolino O., Meo M. Damage tolerance of bio-inspired helicoidal composites under low velocity impact. Compos. Struct. 2017;161:187–203. doi: 10.1016/j.compstruct.2016.10.097. DOI

Zhang F., Lin Y., Wu J.A., Zhang Z., Huang Y., Li C., Wang M. Comparison of stacking sequence on the low-velocity impact failure mechanisms and energy dissipation characteristics of CFRP/Al hybrid laminates. Polym. Compos. 2022;43:5544–5562. doi: 10.1002/pc.26867. DOI

Xiao L., Wang G., Qiu S., Han Z., Li X., Zhang D. Exploration of energy absorption and viscoelastic behavior of CFRPs subjected to low velocity impact. Compos. B Eng. 2019;165:247–254. doi: 10.1016/j.compositesb.2018.11.126. DOI

García-Moreno I., Caminero M., Rodríguez G., López-Cela J. Effect of thermal ageing on the impact damage resistance and tolerance of carbon-fibre-reinforced epoxy laminates. Polymers. 2019;11:160. doi: 10.3390/polym11010160. PubMed DOI PMC

Evci C. Thickness-dependent energy dissipation characteristics of laminated composites subjected to low velocity impact. Compos. Struct. 2015;133:508–521. doi: 10.1016/j.compstruct.2015.07.111. DOI

Agrawal S., Singh K.K., Sarkar P. Impact damage on fibre-reinforced polymer matrix composite—A review. J. Compos. Mater. 2014;48:317–332. doi: 10.1177/0021998312472217. DOI

Sy B.L., Fawaz Z., Bougherara H. Damage evolution in unidirectional and cross-ply flax/epoxy laminates subjected to low velocity impact loading. Compos. Part A Appl. Sci. Manuf. 2018;112:452–467. doi: 10.1016/j.compositesa.2018.06.032. DOI

Giasin K., Dhakal H.N., Featheroson C.A., Pimenov D.Y., Lupton C., Jiang C., Barouni A., Koklu U. Effect of fibre orientation on impact damage resistance of S2/FM94 glass fibre composites for aerospace applications: An experimental evaluation and numerical validation. Polymers. 2021;14:95. doi: 10.3390/polym14010095. PubMed DOI PMC

Wu Z., Huang L., Pan Z., Zhang B., Hu X. Effect of Off-Axial Angle on the Low-Velocity Impact Performance of Braided Laminates. Int J Mech Sci. 2022;216:106967. doi: 10.1016/j.ijmecsci.2021.106967. DOI

Grandidier J.-C., Casari P., Jochum C. A fibre direction compressive failure criterion for long fibre laminates at ply scale, including stacking sequence and laminate thickness effects. Compos. Struct. 2012;94:3799–3806. doi: 10.1016/j.compstruct.2012.06.013. DOI

Heidari-Rarani M., Khalkhali-Sharifi S.S., Shokrieh M.M. Effect of ply stacking sequence on buckling behavior of e-glass/epoxy laminated composites. Comput. Mater. Sci. 2014;89:89–96. doi: 10.1016/j.commatsci.2014.03.017. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...