The Influence of Ply Stacking Sequence on Mechanical Properties of Carbon/Epoxy Composite Laminates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2022/007
Tomas Bata University in Zlín
PubMed
36559933
PubMed Central
PMC9786175
DOI
10.3390/polym14245566
PII: polym14245566
Knihovny.cz E-zdroje
- Klíčová slova
- carbon fibre-reinforced composite, composite failure, flexural, impact, stacking sequence, tensile,
- Publikační typ
- časopisecké články MeSH
In this work, the effect of ply stacking sequence of carbon/epoxy laminates subjected to flexural, tensile and impact loading was investigated. Five laminates with different stacking configurations were produced using the hand-laying-up technique. This includes a unidirectional laminate, cross-ply laminates, and quasi-isotropic laminates. Following the autoclave curing process, the responses of the composites to bending, tension and impact force were determined according to ASTM standards, and their corresponding strength, stiffness as well as impact energy were evaluated. Likewise, the flexural failure mode associated with each laminate was characterised using an optical microscope. The unidirectional laminates have higher flexural and tensile strength compared to the cross-ply and quasi-isotropic laminates. Moreover, as a result of material symmetry, the flexural and tensile modulus of symmetric cross-ply laminate improved by 59.5% and 3.97% compared to the unsymmetric counterpart. Furthermore, the quasi-isotropic laminates with absorption energy of 116.2 kJ/m2 and 115.12 kJ/m2, respectively have higher impact resistance compared to other samples.
Zobrazit více v PubMed
Hallal A., Elmarakbi A., Shaito A., El-Hage H. Advanced Composite Materials for Automotive Applications. John Wiley & Sons Ltd; Chichester, UK: 2013. Overview of Composite Materials and Their Automotive Applications; pp. 1–28.
Friedrich K., Almajid A.A. Manufacturing aspects of advanced polymer composites for automotive applications. Appl. Compos. Mater. 2013;20:107–128. doi: 10.1007/s10443-012-9258-7. DOI
Rubino F., Nisticò A., Tucci F., Carlone P. Marine application of fiber reinforced composites: A review. J. Mar. Sci. Eng. 2020;8:26. doi: 10.3390/jmse8010026. DOI
Teng J.G., Yu T., Fernando D. Strengthening of steel structures with fiber-reinforced polymer composites. J. Constr. Steel Res. 2012;78:131–143. doi: 10.1016/j.jcsr.2012.06.011. DOI
Li C., Guo R., Xian G., Li H. Effects of elevated temperature, hydraulic pressure and fatigue loading on the property evolution of a carbon/glass fiber hybrid rod. Polym. Test. 2020;90:106761. doi: 10.1016/j.polymertesting.2020.106761. DOI
Jayan J.S., Appukuttan S., Wilson R., Joseph K., George G., Oksman K. Fiber Reinforced Composites. Elsevier; Amsterdam, The Netherlands: 2021. An introduction to fiber reinforced composite materials; pp. 1–24.
Dhakal H.N., MacMullen J., Zhang Z.Y. Marine Applications of Advanced Fibre-Reinforced Composites. Elsevier; Amsterdam, The Netherlands: 2016. Moisture measurement and effects on properties of marine composites; pp. 103–124.
Parisi F., Menna C., Prota A. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier; Amsterdam, The Netherlands: 2019. Fabric-Reinforced Cementitious Matrix (FRCM) composites; pp. 199–227.
Bencardino F., Nisticò M. Evaluation of the maximum strain for different steel-FRCM systems in RC beams strengthened in flexure. Fibers. 2022;10:67. doi: 10.3390/fib10080067. DOI
Mazzuca P., Firmo J.P., Correia J.R., Castilho E. Influence of elevated temperatures on the mechanical properties of glass fibre reinforced polymer laminates produced by vacuum infusion. Constr. Build. Mater. 2022;345:128340. doi: 10.1016/j.conbuildmat.2022.128340. DOI
Calabrese A.S., D’Antino T., Colombi P., Poggi C. Long-term behavior of PBO FRCM and comparison with other inorganic-matrix composites. Materials. 2022;15:3281. doi: 10.3390/ma15093281. PubMed DOI PMC
Yumnam M., Gupta H., Ghosh D., Jaganathan J. Inspection of concrete structures externally reinforced with FRP composites using active infrared thermography: A review. Constr. Build. Mater. 2021;310:125265. doi: 10.1016/j.conbuildmat.2021.125265. DOI
Katnam K.B., da Silva L.F.M., Young T.M. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog. Aerosp. Sci. 2013;61:26–42. doi: 10.1016/j.paerosci.2013.03.003. DOI
Nair S., Dasari A., Yue C., Narasimalu S. Failure behavior of unidirectional composites under compression loading: Effect of fiber waviness. Materials. 2017;10:909. doi: 10.3390/ma10080909. PubMed DOI PMC
Rout S., Nayak R.K., Patnaik S.C., Yazdani Nezhad H. Development of improved flexural and impact performance of kevlar/carbon/glass fibers reinforced polymer hybrid composites. J. Compos. Sci. 2022;6:245. doi: 10.3390/jcs6090245. DOI
Khan R.M.A., Tabrizi I.E., Ali H.Q., Demir E., Yildiz M. Investigation on interlaminar delamination tendency of multidirectional carbon fiber composites. Polym. Test. 2020;90:106653. doi: 10.1016/j.polymertesting.2020.106653. DOI
Habibi M., Selmi S., Laperrière L., Mahi H., Kelouwani S. Experimental investigation on the response of unidirectional flax fiber composites to low-velocity impact with after-impact tensile and compressive strength measurement. Compos. B Eng. 2019;171:246–253. doi: 10.1016/j.compositesb.2019.05.011. DOI
Fotouhi M., Sadeghi S., Jalalvand M., Ahmadi M. Analysis of the damage mechanisms in mixed-mode delamination of laminated composites using acoustic emission data clustering. J. Thermoplast. Compos. Mater. 2017;30:318–340. doi: 10.1177/0892705715598362. DOI
Tan R., Xu J., Sun W., Liu Z., Guan Z., Guo X. Relationship between matrix cracking and delamination in CFRP cross-ply laminates subjected to low velocity impact. Materials. 2019;12:3990. doi: 10.3390/ma12233990. PubMed DOI PMC
Caminero M.A., García-Moreno I., Rodríguez G.P. Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: Effects of laminate thickness and ply-stacking sequence. Polym. Test. 2017;63:530–541. doi: 10.1016/j.polymertesting.2017.09.016. DOI
Mlyniec A., Korta J., Kudelski R., Uhl T. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites. Compos. Struct. 2014;118:208–216. doi: 10.1016/j.compstruct.2014.07.047. DOI
Grigoriou K., Mouritz A.P. Influence of ply stacking pattern on the structural properties of quasi-isotropic carbon-epoxy laminates in fire. Compos. Part A Appl. Sci. Manuf. 2017;99:113–120. doi: 10.1016/j.compositesa.2017.04.008. DOI
Jesthi D.K., Mandal P., Rout A.K., Nayak R.K. Effect of carbon/glass fiber symmetric inter-ply sequence on mechanical properties of polymer matrix composites. Procedia Manuf. 2018;20:530–535. doi: 10.1016/j.promfg.2018.02.079. DOI
Kaboglu C., Eken T.Y., Yurekturk Y. Impact performances and failure modes of glass fiber reinforced polymers in different curvatures and stacking sequences. J. Compos. Mater. 2022;56:1123–1138. doi: 10.1177/00219983211059096. DOI
Singh K. Mahesh effect of ply position switching in quasi-isotropic glass fibre reinforced polymer composite subjected to low velocity impact. Int. J. Damage Mech. 2022;31:665–693. doi: 10.1177/10567895211068176. DOI
Giannis S., Hansen P.L., Martin R.H., Jones D.T. Mode I Quasi–Static and Fatigue Delamination Characterisation of Polymer Composites for Wind Turbine Blade Applications. Energy Materials. 2008;3:248–256. doi: 10.1179/174892409X12596773881487. DOI
Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2021.
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2017.
Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. ASTM International; West Conshohocken, PA, USA: 2018.
Sharba M.J., Leman Z., Sultan M.T.H., Ishak M.R., Azmah Hanim M.A. Partial replacement of glass fiber by woven kenaf in hybrid composites and its effect on monotonic and fatigue properties. Bioresources. 2016;11:2665–2683. doi: 10.15376/biores.11.1.2665-2683. DOI
Parmiggiani A., Prato M., Pizzorni M. Effect of the fiber orientation on the tensile and flexural behavior of continuous carbon fiber composites made via fused filament fabrication. Int. J. Adv. Manuf. Technol. 2021;114:2085–2101. doi: 10.1007/s00170-021-06997-5. DOI
Munikenche Gowda T., Naidu A.C.B., Chhaya R. Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos. Part A Appl. Sci. Manuf. 1999;30:277–284. doi: 10.1016/S1359-835X(98)00157-2. DOI
El-Hacha R., Chen D. Behaviour of hybrid FRP–UHPC beams subjected to static flexural loading. Compos. B Eng. 2012;43:582–593. doi: 10.1016/j.compositesb.2011.07.004. DOI
Bezazi A.R., el Mahi A., Berthelot J.M., Bezzazi B. Flexural fatigue behavior of cross-ply laminates: An experimental approach. Strength Mater. 2003;35:149–161. doi: 10.1023/A:1023762528362. DOI
Sharma A., Daggumati S. Computational micromechanical modeling of transverse tensile damage behavior in unidirectional glass fiber-reinforced plastic composite plies: Ductile versus brittle fracture mechanics approach. Int. J. Damage Mech. 2020;29:943–964. doi: 10.1177/1056789519894379. DOI
Arteiro A., Catalanotti G., Melro A.R., Linde P., Camanho P.P. Micro-mechanical analysis of the in situ effect in polymer composite laminates. Compos. Struct. 2014;116:827–840. doi: 10.1016/j.compstruct.2014.06.014. DOI
Alavudeen A., Rajini N., Karthikeyan S., Thiruchitrambalam M., Venkateshwaren N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Mater. Des. 2015;66:246–257. doi: 10.1016/j.matdes.2014.10.067. DOI
Hadăr A., Baciu F., Voicu A.-D., Vlăsceanu D., Tudose D.-I., Adetu C. Mechanical characteristics evaluation of a single ply and multi-ply carbon fiber-reinforced plastic subjected to tensile and bending loads. Polymers. 2022;14:3213. doi: 10.3390/polym14153213. PubMed DOI PMC
Ginzburg D., Pinto F., Iervolino O., Meo M. Damage tolerance of bio-inspired helicoidal composites under low velocity impact. Compos. Struct. 2017;161:187–203. doi: 10.1016/j.compstruct.2016.10.097. DOI
Zhang F., Lin Y., Wu J.A., Zhang Z., Huang Y., Li C., Wang M. Comparison of stacking sequence on the low-velocity impact failure mechanisms and energy dissipation characteristics of CFRP/Al hybrid laminates. Polym. Compos. 2022;43:5544–5562. doi: 10.1002/pc.26867. DOI
Xiao L., Wang G., Qiu S., Han Z., Li X., Zhang D. Exploration of energy absorption and viscoelastic behavior of CFRPs subjected to low velocity impact. Compos. B Eng. 2019;165:247–254. doi: 10.1016/j.compositesb.2018.11.126. DOI
García-Moreno I., Caminero M., Rodríguez G., López-Cela J. Effect of thermal ageing on the impact damage resistance and tolerance of carbon-fibre-reinforced epoxy laminates. Polymers. 2019;11:160. doi: 10.3390/polym11010160. PubMed DOI PMC
Evci C. Thickness-dependent energy dissipation characteristics of laminated composites subjected to low velocity impact. Compos. Struct. 2015;133:508–521. doi: 10.1016/j.compstruct.2015.07.111. DOI
Agrawal S., Singh K.K., Sarkar P. Impact damage on fibre-reinforced polymer matrix composite—A review. J. Compos. Mater. 2014;48:317–332. doi: 10.1177/0021998312472217. DOI
Sy B.L., Fawaz Z., Bougherara H. Damage evolution in unidirectional and cross-ply flax/epoxy laminates subjected to low velocity impact loading. Compos. Part A Appl. Sci. Manuf. 2018;112:452–467. doi: 10.1016/j.compositesa.2018.06.032. DOI
Giasin K., Dhakal H.N., Featheroson C.A., Pimenov D.Y., Lupton C., Jiang C., Barouni A., Koklu U. Effect of fibre orientation on impact damage resistance of S2/FM94 glass fibre composites for aerospace applications: An experimental evaluation and numerical validation. Polymers. 2021;14:95. doi: 10.3390/polym14010095. PubMed DOI PMC
Wu Z., Huang L., Pan Z., Zhang B., Hu X. Effect of Off-Axial Angle on the Low-Velocity Impact Performance of Braided Laminates. Int J Mech Sci. 2022;216:106967. doi: 10.1016/j.ijmecsci.2021.106967. DOI
Grandidier J.-C., Casari P., Jochum C. A fibre direction compressive failure criterion for long fibre laminates at ply scale, including stacking sequence and laminate thickness effects. Compos. Struct. 2012;94:3799–3806. doi: 10.1016/j.compstruct.2012.06.013. DOI
Heidari-Rarani M., Khalkhali-Sharifi S.S., Shokrieh M.M. Effect of ply stacking sequence on buckling behavior of e-glass/epoxy laminated composites. Comput. Mater. Sci. 2014;89:89–96. doi: 10.1016/j.commatsci.2014.03.017. DOI