An Optimum Fatigue Design of Polymer Composite Compressed Natural Gas Tank Using Hybrid Finite Element-Response Surface Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33546387
PubMed Central
PMC7913581
DOI
10.3390/polym13040483
PII: polym13040483
Knihovny.cz E-zdroje
- Klíčová slova
- fatigue life, finite element simulation, gas tanks for vehicles, optimization, polymer composite tank, response surface analysis, type-4 CNG tank,
- Publikační typ
- časopisecké články MeSH
The main purpose of this research is to design a high-fatigue performance hoop wrapped compressed natural gas (CNG) composite cylinder. To this end, an optimization algorithm was presented as a combination of finite element simulation (FES) and response surface analysis (RSA). The geometrical model was prepared as a variable wall-thickness following the experimental measurements. Next, transient dynamic analysis was performed subjected to the refueling process, including the minimum and maximum internal pressures of 20 and 200 bar, respectively. The time histories of stress tensor components were extracted in the critical region. Furthermore, RSA was utilized to investigate the interaction effects of various polymer composite shell manufacturing process parameters (thickness and fiber angle) on the fatigue life of polymer composite CNG pressure tank (type-4). In the optimization procedure, four parameters including wall-thickness of the composite shell in three different sections of the CNG tank and fiber angle were considered as input variables. In addition, the maximum principal stress of the component was considered as the objective function. Eventually, the fatigue life of the polymer composite tank was calculated using stress-based failure criterion. The results indicated that the proposed new design (applying optimal parameters) leads to improve the fatigue life of the polymer composite tank with polyethylene liner about 2.4 times in comparison with the initial design.
Zobrazit více v PubMed
Sawant T., Purwant N.K., Kulkarni S., Karajagi P. Design & Stress Analysis of a Hoop Wrapped CNG Composite Vessel with an SAE-4135 Low Alloy Steel Liner. Int. J. Eng. Res. 2016:338–343.
Heaidari-Rarani M., Ahmadi Jebeli M. Finite element modeling of failure in IV type composite pressure vessel using WCM plug-in in ABAQUS software. Modares Mech. Eng. 2018;18:191–200.
Agrawal A., Kumar S. Fatigue life prediction of a Hoop-Wrapped composite CNG cylinder containing surface flow. Int. J. Emerg. Technol. Adv. Eng. 2014;4:790–796.
Kim E.S., Choi S.K. Risk analysis of CNG composite pressure vessel via computer-aided method and fractography. Eng. Fail. Anal. 2013;27:84–98. doi: 10.1016/j.engfailanal.2012.06.006. DOI
Nouri M., Ashenai-Ghasemi F., Rahimi-Sherbaf G., Kashyzadeh K.R. Experimental and Numerical Study of the Static Performance of a Hoop-Wrapped CNG Composite Cylinder Considering Its Variable Wall Thickness and Polymer Liner. Mech. Compos. Mater. 2020;56:339–352. doi: 10.1007/s11029-020-09885-3. DOI
Seyedi S.M., Naddaf Oskouei A., Sayah Badkhor M. Experimental, numerical and Optimization study of Composite Tanks with Non-Metallic Primer (CNG Fourth Type) Modares Mech. Eng. 2020;20:1789–1800.
Reynaldo A., Pramono H.S., Santosa S.P., Aziz M. Finite Element Analysis of Liquefied Ammonia Tank for Mobility Vehicles Employing Polymers and Composites. Energies. 2020;13:5312. doi: 10.3390/en13205312. DOI
Sapre S., Pareek K., Vyas M. Investigation of structural stability of type IV compressed hydrogen storage tank during refueling of fuel cell vehicle. Energy Storage. 2020;2:150. doi: 10.1002/est2.150. DOI
Ayakdaş O., Aydın L., Savran M., Küçükdoğan N., Öztürk S. Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. Res. Eng. Struct. Mat. 2019;5:189–201.
Altuwair I.A., Khan F. Safety analysis of instantaneous release of compressed natural gas from a cylinder. J. Loss Prev Process Ind. 2020;68:104284. doi: 10.1016/j.jlp.2020.104284. DOI
Tschirschwitz R., Krentel D., Kluge M., Askar E., Habib K., Kohlhoff H., Krüger S., Neumann P.P., Rudolph M., Schoppa A., et al. Hazards from failure of CNG automotive cylinders in fire. J. Hazard. Mater. 2019;367:1–7. doi: 10.1016/j.jhazmat.2018.12.026. PubMed DOI
Chamberlain S., Modarres M. Compressed natural gas bus safety: A quantitative risk assessment. Risk Anal. 2005;25:377–387. doi: 10.1111/j.1539-6924.2005.00596.x. PubMed DOI
Yersak T.A., Elhamid M.H.A., Dailly A., Rogers M., Jason P., Cai M. Dynamics of a type IV comfortable pressure vessel for natural gas passenger vehicles. Int. J. Press. Vessel. Pip. 2019;175:103923. doi: 10.1016/j.ijpvp.2019.103923. DOI
Dicken C.J.B., Merida W. Measured effects of filling time and initial mass on the temperature distribution within a hydrogen cylinder during refueling. J. Power Sources. 2007;165:324–336. doi: 10.1016/j.jpowsour.2006.11.077. DOI
Galassi M.C., Papanikolaou E., Heitsch M., Baraldi D., Iborra B.A., Moretto P. Assessment of CFD models for hydrogen fast filling simulations. Int. J. Hydrog. Energy. 2014;39:6252–6260. doi: 10.1016/j.ijhydene.2013.03.164. DOI
Li Q., Zhou J., Chang Q., Xing W. Effects of geometry and inconstant mass flow rate on temperature within a pressurized hydrogen cylinder during refueling. Int. J. Hydrog. Energy. 2012;37:6043–6052. doi: 10.1016/j.ijhydene.2011.12.020. DOI
Liu Y.L., Zhao Y.Z., Zhao L., Li X., Chen H.G., Zhang L.F., Zhao H., Sheng R.H., Xie T., Hu D.H., et al. Experimental studies on temperature rise within a hydrogen cylinder during refueling. Int. J. Hydrog. Energy. 2010;35:2627–2632. doi: 10.1016/j.ijhydene.2009.04.042. DOI
Deymi-Dashtebayaz M., Farzaneh-Gord M., Nooralipoor N., Rastgar S. The full simulation of rapid refueling of a natural gas vehicle on-board cylinder. J. Nat. Gas. Sci. Eng. 2014;21:1099–1106. doi: 10.1016/j.jngse.2014.11.001. DOI
Reza Kashyzadeh K., Kivi S.A., Rynkovskaya M. Fatigue life assessment of unidirectional fibrous composite centrifugal compressor impeller blades based on FEM. Int. J. Emerg. Technol. Adv. Eng. 2017;7:6–11.
Farrahi G.H., Reza Kashyzadeh K., Minaei M., Sharifpour A., Riazi S. Analysis of Resistance Spot Welding Process Parameters Effect on the Weld Quality of Three-steel Sheets Used in Automotive Industry: Experimental and Finite Element Simulation. Int. J. Eng. Trans. A Basics. 2020;33:148–157.
Reza Kashyzadeh K., Ghorbani S., Forouzanmehr M. Effects of Drying Temperature and Aggregate Shape on the Concrete Compressive Strength: Experiments and Data Mining Techniques. Int. J. Eng. 2020;33:1780–1791.
Ghorbani S., Ghorbani S., Reza Kashyzadeh K. Taguchi Approach and Response Surface Analysis for Design of a High-performance Single-walled Carbon Nanotube Bundle Interconnects in a Full Adder. Int. J. Eng. 2020;33:1598–1607.
Omidi Bidgoli M., Reza Kashyzadeh K., Rahimian Koloor S.S., Petru M. Estimation of Critical Dimensions for the Crack and Pitting Corrosion Defects in the Oil Storage Tank Using Finite Element Method and Taguchi Approach. Metals. 2020;10:1372. doi: 10.3390/met10101372. DOI
Reza Kashyzadeh K., Farrahi G.H., Shariyat M., Ahmadian M.T. Experimental and finite element studies on free vibration of automotive steering knuckle. Int. J. Eng. 2017;30:1776–1783.
Vlase S., Purcarea R., Teodorescu-Draghicescu H., Calin R., Szava I., Mihalcica M. Behavior of a new Heliopol/Stratimat300 composite laminate. J. Optoelectron. Adv. Mater. 2013;78:569–572.
Reza Kashyzadeh K. A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: The case of the steering knuckle. Int. J. Eng. Sci. Technol. 2020;23:392–404. doi: 10.1016/j.jestch.2019.05.011. DOI
Reza Kashyzadeh K., Farrahi G.H., Shariyat M., Ahmadian M.T. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components. Eng. Fail. Anal. 2018;90:534–553. doi: 10.1016/j.engfailanal.2018.03.033. DOI
Reza Kashyzadeh K. Effects of Axial and Multiaxial Variable Amplitude Loading Conditions on the Fatigue Life Assessment of Automotive Steering Knuckle. J. Fail. Anal. Preven. 2020;20:455–463. doi: 10.1007/s11668-020-00841-w. DOI
Maleki E., Unal O., Reza Kashyzadeh K. Efficiency analysis of shot peening parameters on variations of hardness, grain size and residual stress via Taguchi approach. Met. Mater. Int. 2019;25:1436–1447. doi: 10.1007/s12540-019-00290-7. DOI
Fawaz Z., Ellyin F. Fatigue failure model for fiber-reinforced materials under general loading condition. J. Compos. Mater. 1994;28:1432–1451. doi: 10.1177/002199839402801503. DOI