Management of phaeochromocytoma and paraganglioma in patients with germline SDHB pathogenic variants: an international expert Consensus statement
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38097671
DOI
10.1038/s41574-023-00926-0
PII: 10.1038/s41574-023-00926-0
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- feochromocytom * genetika terapie diagnóza MeSH
- lidé MeSH
- nádory nadledvin * genetika terapie diagnóza MeSH
- paragangliom * genetika terapie MeSH
- sukcinátdehydrogenasa genetika MeSH
- zárodečné mutace genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- SDHB protein, human MeSH Prohlížeč
- sukcinátdehydrogenasa MeSH
Adult and paediatric patients with pathogenic variants in the gene encoding succinate dehydrogenase (SDH) subunit B (SDHB) often have locally aggressive, recurrent or metastatic phaeochromocytomas and paragangliomas (PPGLs). Furthermore, SDHB PPGLs have the highest rates of disease-specific morbidity and mortality compared with other hereditary PPGLs. PPGLs with SDHB pathogenic variants are often less differentiated and do not produce substantial amounts of catecholamines (in some patients, they produce only dopamine) compared with other hereditary subtypes, which enables these tumours to grow subclinically for a long time. In addition, SDHB pathogenic variants support tumour growth through high levels of the oncometabolite succinate and other mechanisms related to cancer initiation and progression. As a result, pseudohypoxia and upregulation of genes related to the hypoxia signalling pathway occur, promoting the growth, migration, invasiveness and metastasis of cancer cells. These factors, along with a high rate of metastasis, support early surgical intervention and total resection of PPGLs, regardless of the tumour size. The treatment of metastases is challenging and relies on either local or systemic therapies, or sometimes both. This Consensus statement should help guide clinicians in the diagnosis and management of patients with SDHB PPGLs.
Centro de Investigación Biomédica en Red de Enfermedades Raras Madrid Spain
Clinical Research Center Ijinkai Takeda General Hospital Kyoto Japan
Columbia University Irving Medical Center New York City NY USA
Department of Endocrine Surgery Aix Marseille University Conception Hospital Marseille France
Department of Endocrinology Seth GS Medical College and KEM Hospital Mumbai Maharashtra India
Department of Endocrinology University Medical Center Groningen Groningen Netherlands
Department of Internal Medicine 1 University Hospital P J Šafárik University Košice Slovakia
Department of Internal Medicine Radboud University Medical Center Nijmegen Netherlands
Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
Department of Medical Genetics University of Cambridge Cambridge Biomedical Campus Cambridge UK
Department of Medical Sciences Uppsala University Uppsala Sweden
Department of Medicine 4 University Hospital Ludwig Maximilians University Munich Munich Germany
Department of Medicine St Vincent's Hospital Medical School Melbourne Victoria Australia
Department of Pathology University Medical Center Utrecht Utrecht Netherlands
Department of Surgery UCSF Mount Zion San Francisco CA USA
Department of Surgical Oncology MD Anderson Cancer Center Houston TX USA
Division of Endocrine Surgery Department of Surgery Mayo Clinic Rochester MN USA
Division of Endocrinology Diabetes Metabolism and Nutrition Mayo Clinic Rochester MN USA
Green Templeton College University of Oxford Oxford UK
Hereditary Endocrine Cancer Group Spanish National Cancer Research Center Madrid Spain
James J Peters VA Medical Center New York City NY USA
Malcom Randall VA Medical Center Gainesville FL USA
Molecular Imaging Program National Cancer Institute National Institutes of Health Bethesda MD USA
NET Unit Royal Free Hospital London UK
Princess Máxima Center for paediatric oncology Utrecht Netherlands
Sorbonne University Department of Nuclear Medicine Pitié Salpêtrière Paris France
Stanford University School of Medicine Department of Physician Assistant Studies Stanford CA USA
Surgical Oncology Program National Cancer Institute National Institutes of Health Bethesda MD USA
Université Paris Cité Inserm PARCC Equipe Labellisée par la Ligue contre le Cancer Paris France
Zobrazit více v PubMed
Kastriti, M. E. et al. Schwann cell precursors generate the majority of chromaffin cells in zuckerkandl organ and some sympathetic neurons in paraganglia. Front. Mol. Neurosci. 12, 6 (2019). PubMed PMC
Furlan, A. et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357, eaal3753 (2017). PubMed PMC
Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000). PubMed
Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001). PubMed PMC
Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26, 268–270 (2000). PubMed
Burnichon, N. et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 19, 3011–3020 (2010). PubMed PMC
Andrews, K. A. et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J. Med. Genet. 55, 384–394 (2018). PubMed
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). PubMed PMC
Lenders, J. W. et al. Pheochromocytoma and paraganglioma: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 99, 1915–1942 (2014). PubMed
Taieb, D. et al. Current approaches and recent developments in the management of head and neck paragangliomas. Endocr. Rev. 35, 795–819 (2014). PubMed PMC
Gimenez-Roqueplo, A. P. et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA Investigators. J. Clin. Endocrinol. Metab. 98, E162–E173 (2013). PubMed
Assadipour, Y. et al. SDHB mutation status and tumor size but not tumor grade are important predictors of clinical outcome in pheochromocytoma and abdominal paraganglioma. Surgery 161, 230–239 (2017). PubMed
Timmers, H. J. et al. Staging and functional characterization of pheochromocytoma and paraganglioma by PubMed PMC
Turkova, H. et al. Characteristics and outcomes of metastatic SDHB and sporadic pheochromocytoma/paraganglioma: an National Institutes of Health Study. Endocr. Pract. 22, 302–314 (2016). PubMed
Gimenez-Roqueplo, A. P. et al. Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J. Clin. Endocrinol. Metab. 87, 4771–4774 (2002). PubMed
Gimenez-Roqueplo, A. P. et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 63, 5615–5621 (2003). PubMed
Schovanek, J. et al. The size of the primary tumor and age at initial diagnosis are independent predictors of the metastatic behavior and survival of patients with SDHB-related pheochromocytoma and paraganglioma: a retrospective cohort study. BMC Cancer 14, 523 (2014). PubMed PMC
Brouwers, F. M. et al. High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J. Clin. Endocrinol. Metab. 91, 4505–4509 (2006). PubMed
Pamporaki, C. et al. Prediction of metastatic pheochromocytoma and paraganglioma: a machine learning modelling study using data from a cross-sectional cohort. Lancet Digit. Health 5, e551–e559 (2023). PubMed
Rijken, J. A. et al. Increased mortality in SDHB but not in SDHD pathogenic variant carriers. Cancers 11, 103 (2019). PubMed PMC
Papathomas, T. G. et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur. J. Endocrinol. 170, 1–12 (2013). PubMed
Pasini, B. et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur. J. Hum. Genet. 16, 79–88 (2008). PubMed
Denes, J. et al. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J. Clin. Endocrinol. Metab. 100, E531–E541 (2015). PubMed
Eisenhofer, G. et al. Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocr. Relat. Cancer 18, 97–111 (2011). PubMed
Amar, L. et al. International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers. Nat. Rev. Endocrinol. 17, 435–444 (2021). PubMed PMC
Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 1490 (2004). PubMed
Lenders, J. W. M. et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J. Hypertens. 38, 1443–1456 (2020). PubMed PMC
Ben Aim, L. et al. International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma. J. Med. Genet. 59, 785–792 (2022). PubMed
Benn, D. E. et al. Bayesian approach to determining penetrance of pathogenic SDH variants. J. Med. Genet. 55, 729–734 (2018). PubMed
Daniel, E., Jones, R., Bull, M. & Newell-Price, J. Rapid-sequence MRI for long-term surveillance for paraganglioma and phaeochromocytoma in patients with succinate dehydrogenase mutations. Eur. J. Endocrinol. 175, 561–570 (2016). PubMed
Eijkelenkamp, K. et al. Calculating the optimal surveillance for head and neck paraganglioma in SDHB-mutation carriers. Fam. Cancer 16, 123–130 (2017). PubMed
Jafri, M. et al. Evaluation of SDHB, SDHD and VHL gene susceptibility testing in the assessment of individuals with non-syndromic phaeochromocytoma, paraganglioma and head and neck paraganglioma. Clin. Endocrinol. 78, 898–906 (2013).
Jasperson, K. W. et al. Role of rapid sequence whole-body MRI screening in SDH-associated hereditary paraganglioma families. Fam. Cancer 13, 257–265 (2014). PubMed
Jochmanova, I. et al. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J. Cancer Res. Clin. Oncol. 143, 1421–1435 (2017). PubMed PMC
Martins, R. G. et al. Surveillance of succinate dehydrogenase gene mutation carriers: insights from a nationwide cohort. Clin. Endocrinol. 92, 545–553 (2020).
Niemeijer, N. D. et al. The phenotype of SDHB germline mutation carriers: a nationwide study. Eur. J. Endocrinol. 177, 115–125 (2017). PubMed
Tufton, N., Sahdev, A. & Akker, S. A. Radiological surveillance screening in asymptomatic succinate dehydrogenase mutation carriers. J. Endocr. Soc. 1, 897–907 (2017). PubMed PMC
Tufton, N., Sahdev, A., Drake, W. M. & Akker, S. A. Can subunit-specific phenotypes guide surveillance imaging decisions in asymptomatic SDH mutation carriers? Clin. Endocrinol. 90, 31–46 (2019).
Benn, D. E., Richardson, A. L., Marsh, D. J. & Robinson, B. G. Genetic testing in pheochromocytoma- and paraganglioma-associated syndromes. Ann. N. Y. Acad. Sci. 1073, 104–111 (2006). PubMed
Eisenhofer, G. et al. Biochemical diagnosis of chromaffin cell tumors in patients at high and low risk of disease: plasma versus urinary free or deconjugated o-methylated catecholamine metabolites. Clin. Chem. 64, 1646–1656 (2018). PubMed
Eisenhofer, G. et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur. J. Cancer 48, 1739–1749 (2012). PubMed
Saie, C. et al. Screening of a large cohort of asymptomatic SDHx mutation carriers in routine practice. J. Clin. Endocrinol. Metab. 106, e1301–e1315 (2021). PubMed
Rao, D. et al. Plasma methoxytyramine: clinical utility with metanephrines for diagnosis of pheochromocytoma and paraganglioma. Eur. J. Endocrinol. 177, 103–113 (2017). PubMed PMC
Tufton, N., White, G., Drake, W. M., Sahdev, A. & Akker, S. A. Diffusion-weighted imaging (DWI) highlights SDHB-related tumours: a pilot study. Clin. Endocrinol. 91, 104–109 (2019).
Gravel, G. et al. The value of a rapid contrast-enhanced angio-MRI protocol in the detection of head and neck paragangliomas in SDHx mutations carriers: a retrospective study on behalf of the PGL.EVA investigators. Eur. Radiol. 26, 1696–1704 (2016). PubMed
Janssen, I. et al. Superiority of [ PubMed PMC
Taieb, D. et al. European Association of Nuclear Medicine practice guideline/Society of Nuclear Medicine and Molecular Imaging procedure standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur. J. Nucl. Med. Mol. Imaging 46, 2112–2137 (2019). PubMed PMC
Carrasquillo, J. A. et al. Imaging of pheochromocytoma and paraganglioma. J. Nucl. Med. 62, 1033–1042 (2021). PubMed PMC
Kong, G. et al. The role of PubMed
Jha, A. et al. Superiority of PubMed
Buffet, A. et al. Positive impact of genetic test on the management and outcome of patients with paraganglioma and/or pheochromocytoma. J. Clin. Endocrinol. Metab. 104, 1109–1118 (2019). PubMed
Davidoff, D. F. et al. Surveillance improves outcomes for carriers of SDHB pathogenic variants: a multicenter study. J. Clin. Endocrinol. Metab. 107, e1907–e1916 (2022). PubMed PMC
Raygada, M., King, K. S., Adams, K. T., Stratakis, C. A. & Pacak, K. Counseling patients with succinate dehydrogenase subunit defects: genetics, preventive guidelines, and dealing with uncertainty. J. Pediatr. Endocrinol. Metab. 27, 837–844 (2014). PubMed PMC
Athens, B. A. et al. A systematic review of randomized controlled trials to assess outcomes of genetic counseling. J. Genet. Couns. 26, 902–933 (2017). PubMed PMC
Yip, L. et al. American Association of Endocrine Surgeons guidelines for adrenalectomy: executive summary. JAMA Surg. 157, 870–877 (2022). PubMed PMC
Lee, J. et al. Open and laparoscopic adrenalectomy: analysis of the National Surgical Quality Improvement Program. J. Am. Coll. Surg. 206, 953–959 (2008). PubMed
Li, J., Wang, Y., Chang, X. & Han, Z. Laparoscopic adrenalectomy (LA) vs open adrenalectomy (OA) for pheochromocytoma (PHEO): a systematic review and meta-analysis. Eur. J. Surg. Oncol. 46, 991–998 (2020). PubMed
Zelinka, T. et al. Metastatic pheochromocytoma: does the size and age matter? Eur. J. Clin. Invest. 41, 1121–1128 (2011). PubMed PMC
Dickson, P. V. et al. Posterior retroperitoneoscopic adrenalectomy is a safe and effective alternative to transabdominal laparoscopic adrenalectomy for pheochromocytoma. Surgery 150, 452–458 (2011). PubMed
Hu, H. et al. En bloc resection with major blood vessel reconstruction for locally invasive retroperitoneal paragangliomas: a 15-year experience with literature review. World J. Surg. 41, 997–1004 (2017). PubMed
Abadin, S. S. et al. Impact of surgical resection for subdiaphragmatic paragangliomas. World J. Surg. 38, 733–741 (2014). PubMed
Cui, Y. et al. Local-regional recurrence of pheochromocytoma/paraganglioma: characteristics, risk factors and outcomes. Front. Endocrinol. 12, 762548 (2021).
Li, M. L., Fitzgerald, P. A., Price, D. C. & Norton, J. A. Iatrogenic pheochromocytomatosis: a previously unreported result of laparoscopic adrenalectomy. Surgery 130, 1072–1077 (2001). PubMed
Ricketts, C. J. et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum. Mutat. 31, 41–51 (2010). PubMed
Hamidi, O. et al. Malignant pheochromocytoma and paraganglioma: 272 patients over 55 years. J. Clin. Endocrinol. Metab. 102, 3296–3305 (2017). PubMed PMC
Roman-Gonzalez, A. et al. Impact of surgical resection of the primary tumor on overall survival in patients with metastatic pheochromocytoma or sympathetic paraganglioma. Ann. Surg. 268, 172–178 (2018). PubMed
Fishbein, L. et al. The North American Neuroendocrine Tumor Society consensus guidelines for surveillance and management of metastatic and/or unresectable pheochromocytoma and paraganglioma. Pancreas 50, 469–493 (2021). PubMed
Livingstone, M. et al. Hemodynamic stability during pheochromocytoma resection: lessons learned over the last two decades. Ann. Surg. Oncol. 22, 4175–4180 (2015). PubMed
Berends, A. M. A., Kerstens, M. N., Lenders, J. W. M. & Timmers, H. Approach to the patient: perioperative management of the patient with pheochromocytoma or sympathetic paraganglioma. J. Clin. Endocrinol. Metab. 105, dgaa441 (2020). PubMed
Taieb, D. et al. Clinical consensus guideline on the management of phaeochromocytoma and paraganglioma in patients harbouring germline SDHD pathogenic variants. Lancet Diabetes Endocrinol. 11, 345–361 (2023). PubMed
Groeben, H. et al. International multicentre review of perioperative management and outcome for catecholamine-producing tumours. Br. J. Surg. 107, e170–e178 (2020). PubMed
Buisset, C. et al. Pheochromocytoma surgery without systematic preoperative pharmacological preparation: insights from a referral tertiary center experience. Surg. Endosc. 35, 728–735 (2021). PubMed
Shao, Y. et al. Preoperative alpha blockade for normotensive pheochromocytoma: is it necessary? J. Hypertens. 29, 2429–2432 (2011). PubMed
Brunaud, L. et al. Both preoperative alpha and calcium channel blockade impact intraoperative hemodynamic stability similarly in the management of pheochromocytoma. Surgery 156, 1410–1417 (2014). PubMed
Ulchaker, J. C., Goldfarb, D. A., Bravo, E. L. & Novick, A. C. Successful outcomes in pheochromocytoma surgery in the modern era. J. Urol. 161, 764–767 (1999). PubMed
Groeben, H. et al. Perioperative Perioperative alpha-receptor blockade in phaeochromocytoma surgery: an observational case series. Br. J. Anaesth. 118, 182–189 (2017).-receptor blockade in phaeochromocytoma surgery: an observational case series. Br. J. Anaesth. 118, 182–189 (2017). PubMed
Schimmack, S. et al. Meta-analysis of α-blockade versus no blockade before adrenalectomy for phaeochromocytoma. Br. J. Surg. 107, e102–e108 (2020). PubMed
Buitenwerf, E. et al. Efficacy of α-blockers on hemodynamic control during pheochromocytoma resection: a randomized controlled trial. J. Clin. Endocrinol. Metab. 105, 2381–2391 (2020). PubMed
Fassnacht, M. et al. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1476–1490 (2020). PubMed
Neumann, H. P. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292, 943–951 (2004). PubMed
Lloyd, S., Obholzer, R. & Tysome, J.; BSBS Consensus Group. British Skull Base Society clinical consensus document on management of head and neck paragangliomas. Otolaryngol. Head Neck Surg. 163, 400–409 (2020). PubMed
McCrary, H. C. et al. Characterization of malignant head and neck paragangliomas at a single institution across multiple decades. JAMA Otolaryngol. Head Neck Surg. 145, 641–646 (2019). PubMed PMC
Richter, S. et al. Head/neck paragangliomas: focus on tumor location, mutational status and plasma methoxytyramine. Endocr. Relat. Cancer 29, 213–224 (2022). PubMed PMC
Timmers, H. J., Gimenez-Roqueplo, A. P., Mannelli, M. & Pacak, K. Clinical aspects of SDHx-related pheochromocytoma and paraganglioma. Endocr. Relat. Cancer 16, 391–400 (2009). PubMed PMC
Rijken, J. A. et al. Nationwide study of patients with head and neck paragangliomas carrying SDHB germline mutations. BJS Open 2, 62–69 (2018). PubMed PMC
Wanna, G. B. et al. Subtotal resection for management of large jugular paragangliomas with functional lower cranial nerves. Otolaryngol. Head Neck Surg. 151, 991–995 (2014). PubMed
Manzoor, N. F. et al. Contemporary management of jugular paragangliomas with neural preservation. Otolaryngol. Head Neck Surg. 164, 391–398 (2021). PubMed
Sethi, R. V., Sethi, R. K., Herr, M. W. & Deschler, D. G. Malignant head and neck paragangliomas: treatment efficacy and prognostic indicators. Am. J. Otolaryngol. 34, 431–438 (2013). PubMed
Moskovic, D. J. et al. Malignant head and neck paragangliomas: is there an optimal treatment strategy? Head Neck Oncol. 2, 23 (2010). PubMed PMC
Moore, M. G., Netterville, J. L., Mendenhall, W. M., Isaacson, B. & Nussenbaum, B. Head and neck paragangliomas: an update on evaluation and management. Otolaryngol. Head Neck Surg. 154, 597–605 (2016). PubMed
Ivan, M. E. et al. A meta-analysis of tumor control rates and treatment-related morbidity for patients with glomus jugulare tumors. J. Neurosurg. 114, 1299–1305 (2011). PubMed
Gaynor, B. G., Elhammady, M. S., Jethanamest, D., Angeli, S. I. & Aziz-Sultan, M. A. Incidence of cranial nerve palsy after preoperative embolization of glomus jugulare tumors using Onyx. J. Neurosurg. 120, 377–381 (2014). PubMed
Linskey, M. E. et al. Stroke risk after abrupt internal carotid artery sacrifice: accuracy of preoperative assessment with balloon test occlusion and stable xenon-enhanced CT. AJNR Am. J. Neuroradiol. 15, 829–843 (1994). PubMed PMC
Tarr, R. W. et al. Complications of preoperative balloon test occlusion of the internal carotid arteries: experience in 300 cases. Skull Base Surg. 1, 240–244 (1991). PubMed PMC
Mathis, J. M. et al. Temporary balloon test occlusion of the internal carotid artery: experience in 500 cases. AJNR Am. J. Neuroradiol. 16, 749–754 (1995). PubMed PMC
Suarez, C. et al. Carotid body paragangliomas: a systematic study on management with surgery and radiotherapy. Eur. Arch. Otorhinolaryngol. 271, 23–34 (2014). PubMed
Suarez, C. et al. Jugular and vagal paragangliomas: systematic study of management with surgery and radiotherapy. Head Neck 35, 1195–1204 (2013). PubMed
Makis, W., McCann, K., McEwan, A. J. & Sawyer, M. B. Combined treatment with 131I-MIBG and sunitinib induces remission in a patient with metastatic paraganglioma due to hereditary paraganglioma-pheochromocytoma syndrome from an SDHB mutation. Clin. Nucl. Med. 41, 204–206 (2016). PubMed
Ibuki, N. et al. A pheochromocytoma of urinary bladder treated with neoadjuvant chemotherapy [Japanese]. Hinyokika Kiyo 55, 765–768 (2009). PubMed
Visani, J. et al. Surgical treatment of metastatic pheochromocytomas of the spine: a systematic review. J. Integr. Neurosci. 20, 499–507 (2021). PubMed
Bizzarri, N. et al. Peritoneal carcinomatosis from ovarian paraganglioma: report of a rare case and systematic review of the literature. J. Obstet. Gynaecol. Res. 44, 1682–1692 (2018). PubMed
Amar, L. et al. MANAGEMENT OF ENDOCRINE DISEASE: recurrence or new tumors after complete resection of pheochromocytomas and paragangliomas: a systematic review and meta-analysis. Eur. J. Endocrinol. 175, R135–R145 (2016). PubMed
Holscher, I., van den Berg, T. J., Dreijerink, K. M. A., Engelsman, A. F. & Nieveen van Dijkum, E. J. M. Recurrence rate of sporadic pheochromocytomas after curative adrenalectomy: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 106, 588–597 (2021). PubMed
Wachtel, H. et al. Predicting metastatic potential in pheochromocytoma and paraganglioma: a comparison of PASS and GAPP scoring systems. J. Clin. Endocrinol. Metab. 105, 4661–4670 (2020).
Eisenhofer, G. et al. Biochemical and clinical manifestations of dopamine-producing paragangliomas: utility of plasma methoxytyramine. J. Clin. Endocrinol. Metab. 90, 2068–2075 (2005). PubMed
Pamporaki, C. et al. Determinants of disease-specific survival in patients with and without metastatic pheochromocytoma and paraganglioma. Eur. J. Cancer 169, 32–41 (2022). PubMed
Fishbein, L. et al. External beam radiation therapy (EBRT) for patients with malignant pheochromocytoma and non-head and -neck paraganglioma: combination with PubMed PMC
Mesko, S. et al. Spine stereotactic radiosurgery for metastatic pheochromocytoma. Cureus 11, e4742 (2019). PubMed PMC
Ayala-Ramirez, M. et al. Bone metastases and skeletal-related events in patients with malignant pheochromocytoma and sympathetic paraganglioma. J. Clin. Endocrinol. Metab. 98, 1492–1497 (2013). PubMed PMC
Gravel, G. et al. Prevention of serious skeletal-related events by interventional radiology techniques in patients with malignant paraganglioma and pheochromocytoma. Endocrine 59, 547–554 (2018). PubMed
Pacak, K. et al. Radiofrequency ablation: a novel approach for treatment of metastatic pheochromocytoma. J. Natl Cancer Inst. 93, 648–649 (2001). PubMed
Venkatesan, A. M. et al. Radiofrequency ablation of metastatic pheochromocytoma. J. Vasc. Interv. Radiol. 20, 1483–1490 (2009). PubMed PMC
Zhang, W. et al. Computed tomography-guided cryoablation for adrenal pheochromocytoma: safety and clinical effectiveness. Surg. Laparosc. Endosc. Percutan. Tech. 29, 409–412 (2019). PubMed
Kohlenberg, J. et al. Efficacy and safety of ablative therapy in the treatment of patients with metastatic pheochromocytoma and paraganglioma. Cancers 11, 195 (2019). PubMed PMC
Deljou, A. et al. Hemodynamic instability during percutaneous ablation of extra-adrenal metastases of pheochromocytoma and paragangliomas: a case series. BMC Anesthesiol. 18, 158 (2018). PubMed PMC
Hidaka, S. et al. Malignant pheochromocytoma with liver metastasis treated by transcatheter arterial chemo-embolization (TACE). Intern. Med. 49, 645–651 (2010). PubMed
Hescot, S. et al. One-year progression-free survival of therapy-naive patients with malignant pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 98, 4006–4012 (2013). PubMed
Hescot, S. et al. Prognosis of malignant pheochromocytoma and paraganglioma (MAPP-Prono study): an ENS@T retrospective study. J. Clin. Endocrinol. Metab. 104, 2367–2374 (2019). PubMed
Dhir, M. et al. Clinical predictors of malignancy in patients with pheochromocytoma and paraganglioma. Ann. Surg. Oncol. 24, 3624–3630 (2017). PubMed
Jochmanova, I. et al. Clinical characteristics and outcomes of SDHB-related pheochromocytoma and paraganglioma in children and adolescents. J. Cancer Res. Clin. Oncol. 146, 1051–1063 (2020). PubMed PMC
Nolting, S. et al. Current management of pheochromocytoma/paraganglioma: a guide for the practicing clinician in the era of precision medicine. Cancers 11, 1505 (2019). PubMed PMC
Zheng, L. et al. Hypertensive crisis during microwave ablation of adrenal neoplasms: a retrospective analysis of predictive factors. J. Vasc. Interv. Radiol. 30, 1343–1350 (2019). PubMed
Eisenhofer, G. et al. Adverse drug reactions in patients with phaeochromocytoma: incidence, prevention and management. Drug Saf. 30, 1031–1062 (2007). PubMed
Pacak, K. Preoperative management of the pheochromocytoma patient. J. Clin. Endocrinol. Metab. 92, 4069–4079 (2007). PubMed
Nazari, M. A., Rosenblum, J. S., Haigney, M. C., Rosing, D. R. & Pacak, K. Pathophysiology and acute management of tachyarrhythmias in pheochromocytoma: JACC review topic of the week. J. Am. Coll. Cardiol. 76, 451–464 (2020). PubMed PMC
Talvacchio, S., Nazari, M. A. & Pacak, K. Supportive management of patients with pheochromocytoma/paraganglioma undergoing noninvasive treatment. Curr. Opin. Endocrinol. Diabetes Obes. 29, 294–301 (2022). PubMed PMC
Huang, H. et al. Treatment of malignant pheochromocytoma/paraganglioma with cyclophosphamide, vincristine, and dacarbazine: recommendation from a 22-year follow-up of 18 patients. Cancer 113, 2020–2028 (2008). PubMed
Averbuch, S. D. et al. Malignant pheochromocytoma: effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann. Intern. Med. 109, 267–273 (1988). PubMed
Niemeijer, N. D., Alblas, G., van Hulsteijn, L. T., Dekkers, O. M. & Corssmit, E. P. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis. Clin. Endocrinol. 81, 642–651 (2014).
Asai, S., Katabami, T., Tsuiki, M., Tanaka, Y. & Naruse, M. Controlling tumor progression with cyclophosphamide, vincristine, and dacarbazine treatment improves survival in patients with metastatic and unresectable malignant pheochromocytomas/paragangliomas. Horm. Cancer 8, 108–118 (2017). PubMed PMC
Deutschbein, T. et al. Treatment of malignant phaeochromocytoma with a combination of cyclophosphamide, vincristine and dacarbazine: own experience and overview of the contemporary literature. Clin. Endocrinol. 82, 84–90 (2015).
Tanabe, A. et al. Combination chemotherapy with cyclophosphamide, vincristine, and dacarbazine in patients with malignant pheochromocytoma and paraganglioma. Horm. Cancer 4, 103–110 (2013). PubMed PMC
Jawed, I. et al. Continued tumor reduction of metastatic pheochromocytoma/paraganglioma harboring succinate dehydrogenase subunit b mutations with cyclical chemotherapy. Cell Mol. Neurobiol. 38, 1099–1106 (2018). PubMed PMC
Fishbein, L. et al. SDHB mutation carriers with malignant pheochromocytoma respond better to CVD. Endocr. Relat. Cancer 24, L51–L55 (2017). PubMed
Pacheco, S. T. et al. Metastatic pheochromocytoma and paraganglioma: a retrospective multicentre analysis on prognostic and predictive factors to chemotherapy. Ecancermedicalscience 17, 1523 (2023). PubMed PMC
Fischer, A. et al. Responses to systemic therapy in metastatic pheochromocytoma/paraganglioma - a retrospective multi-center cohort study. Eur. J. Endocrinol. https://doi.org/10.1093/ejendo/lvad146 (2023). PubMed DOI
Shah, M. H. et al. Neuroendocrine and adrenal tumors, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 19, 839–868 (2021). PubMed
Benn, D. E. et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J. Clin. Endocrinol. Metab. 91, 827–836 (2006). PubMed
Petrak, O. et al. Blood pressure profile, catecholamine phenotype, and target organ damage in pheochromocytoma/paraganglioma. J. Clin. Endocrinol. Metab. 104, 5170–5180 (2019). PubMed
Gonias, S. et al. Phase II study of high-dose [ PubMed PMC
Pryma, D. A. et al. Efficacy and safety of high-specific-activity PubMed PMC
Makis, W., McCann, K. & McEwan, A. J. The challenges of treating paraganglioma patients with PubMed PMC
Zandee, W. T. et al. Treatment of inoperable or metastatic paragangliomas and pheochromocytomas with peptide receptor radionuclide therapy using PubMed
van Hulsteijn, L. T., Niemeijer, N. D., Dekkers, O. M. & Corssmit, E. P.
Satapathy, S., Mittal, B. R. & Bhansali, A. Peptide receptor radionuclide therapy in the management of advanced pheochromocytoma and paraganglioma: a systematic review and meta-analysis. Clin. Endocrinol. 91, 718–727 (2019).
Nastos, K. et al. Peptide receptor radionuclide treatment and PubMed
Carrasquillo, J. A. et al. Systemic radiopharmaceutical therapy of pheochromocytoma and paraganglioma. J. Nucl. Med. 62, 1192–1199 (2021). PubMed PMC
Fonte, J. S. et al. False-negative PubMed PMC
Timmers, H. J. et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J. Clin. Oncol. 25, 2262–2269 (2007). PubMed
Timmers, H. J. et al. Comparison of PubMed PMC
Petenuci, J. et al. SDHB large deletions are associated with absence of MIBG uptake in metastatic lesions of malignant paragangliomas. Endocrine 72, 586–590 (2021). PubMed
Lynn, M. D. et al. Portrayal of pheochromocytoma and normal human adrenal medulla by m-[ PubMed
Donato, S., Simoes, H., Pinto, A. T., B, M. C. & Leite, V. SDHx-related pheochromocytoma/paraganglioma — genetic, clinical, and treatment outcomes in a series of 30 patients from a single center. Endocrine 65, 408–415 (2019). PubMed
Carrasquillo, J. A., Pandit-Taskar, N. & Chen, C. C. I-131 metaiodobenzylguanidine therapy of pheochromocytoma and paraganglioma. Semin. Nucl. Med. 46, 203–214 (2016). PubMed
Amar, L. et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J. Clin. Endocrinol. Metab. 92, 3822–3828 (2007). PubMed
Ayala-Ramirez, M. et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J. Clin. Endocrinol. Metab. 96, 717–725 (2011). PubMed
Noto, R. B. et al. Phase 1 study of high-specific-activity I-131 MIBG for metastatic and/or recurrent pheochromocytoma or paraganglioma. J. Clin. Endocrinol. Metab. 103, 213–220 (2018). PubMed
Safford, S. D. et al. Iodine -131 metaiodobenzylguanidine is an effective treatment for malignant pheochromocytoma and paraganglioma. Surgery 134, 956–962 (2003). PubMed
Thorpe, M. P. et al. Long-term outcomes of 125 patients with metastatic pheochromocytoma or paraganglioma treated with 131-I MIBG. J. Clin. Endocrinol. Metab. 105, e494–e501 (2020). PubMed
Elston, M. S. et al. Increased SSTR2A and SSTR3 expression in succinate dehydrogenase-deficient pheochromocytomas and paragangliomas. Hum. Pathol. 46, 390–396 (2015). PubMed
Kaemmerer, D. et al. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas. Oncotarget 8, 89958–89969 (2017). PubMed PMC
Fischer, A. et al. Metastatic pheochromocytoma and paraganglioma: somatostatin receptor 2 expression, genetics and therapeutic responses. J. Clin. Endocrinol. Metab. 108, 2676–2685 (2023). PubMed PMC
Roll, W. et al. Somatostatin receptor-targeted radioligand therapy in head and neck paraganglioma. World Neurosurg. 143, e391–e399 (2020). PubMed
Tsang, E. S., Funk, G., Leung, J., Kalish, G. & Kennecke, H. F. Supportive management of patients with advanced pheochromocytomas and paragangliomas receiving PRRT. Curr. Oncol. 28, 2823–2829 (2021). PubMed PMC
Pinato, D. J. et al. Peptide receptor radionuclide therapy for metastatic paragangliomas. Med. Oncol. 33, 47 (2016). PubMed
Kolasinska-Cwikla, A. et al. A clinical efficacy of PRRT in patients with advanced, nonresectable, paraganglioma-pheochromocytoma, related to SDHx gene mutation. J. Clin. Med. 8, 952 (2019). PubMed PMC
Vyakaranam, A. R. et al. Favorable outcome in patients with pheochromocytoma and paraganglioma treated with PubMed PMC
Hadoux, J. et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int. J. Cancer 135, 2711–2720 (2014). PubMed
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009). PubMed
O, J. H., Lodge, M. A. & Wahl, R. L. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology 280, 576–584 (2016). PubMed
Hegi, M. E. et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J. Clin. Oncol. 26, 4189–4199 (2008). PubMed
Zhou, Y., Cui, Y., Zhang, D. & Tong, A. Efficacy and safety of tyrosine kinase inhibitors in patients with metastatic pheochromocytomas/paragangliomas. J. Clin. Endocrinol. Metab. 108, 755–766 (2023). PubMed
O’Kane, G. M. et al. A phase 2 trial of sunitinib in patients with progressive paraganglioma or pheochromocytoma: the SNIPP trial. Br. J. Cancer 120, 1113–1119 (2019). PubMed PMC
Ayala-Ramirez, M. et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J. Clin. Endocrinol. Metab. 97, 4040–4050 (2012). PubMed PMC
Baudin, E. et al. 567O_PR — First international randomized study in malignant progressive pheochromocytoma and paragangliomas (FIRSTMAPPP): an academic double-blind trial investigating sunitinib. Ann. Oncol. 32, S621–S625 (2021).
Jimenez C, P. M., Busaidy N, Habra MA, Waguespack S, Jessop A. A phase 2 study to evaluate the effects of cabozantinib in patients with unresectable metastatic pheochromocytomas and paragangliomas. International Symposium on Pheochromocytoma and Paraganglioma (Sydney, Australia, 2017).
Naing, A. et al. Phase 2 study of pembrolizumab in patients with advanced rare cancers. J. Immunother. Cancer 8, e000347 (2020). PubMed PMC
Jimenez, C. et al. Phase II clinical trial of pembrolizumab in patients with progressive metastatic pheochromocytomas and paragangliomas. Cancers 12, 2307 (2020). PubMed PMC
Caplin, M. E. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 371, 224–233 (2014). PubMed
Pavel, M. et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 844–860 (2020). PubMed
Rinke, A. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27, 4656–4663 (2009). PubMed
Greenberg, S. E. et al. Tumor detection rates in screening of individuals with SDHx-related hereditary paraganglioma-pheochromocytoma syndrome. Genet. Med. 22, 2101–2107 (2020). PubMed PMC
Hes, F. J. et al. Low penetrance of a SDHB mutation in a large Dutch paraganglioma family. BMC Med. Genet. 11, 92 (2010). PubMed PMC
Papathomas, T. G. et al. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod. Pathol. 28, 807–821 (2015). PubMed
Pasini, B. & Stratakis, C. A. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J. Intern. Med. 266, 19–42 (2009). PubMed
Rijken, J. A. et al. Low penetrance of paraganglioma and pheochromocytoma in an extended kindred with a germline SDHB exon 3 deletion. Clin. Genet. 89, 128–132 (2016). PubMed
Schiavi, F. et al. Are we overestimating the penetrance of mutations in SDHB? Hum. Mutat. 31, 761–762 (2010). PubMed
Solis, D. C. et al. Penetrance and clinical consequences of a gross SDHB deletion in a large family. Clin. Genet. 75, 354–363 (2009). PubMed PMC
Timmers, H. J. et al. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 92, 779–786 (2007). PubMed
van Hulsteijn, L. T., Dekkers, O. M., Hes, F. J., Smit, J. W. & Corssmit, E. P. Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: a systematic review and meta-analysis. J. Med. Genet. 49, 768–776 (2012). PubMed
Taieb, D., Jha, A., Treglia, G. & Pacak, K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr. Relat. Cancer 26, R627–R652 (2019). PubMed PMC