Management of phaeochromocytoma and paraganglioma in patients with germline SDHB pathogenic variants: an international expert Consensus statement

. 2024 Mar ; 20 (3) : 168-184. [epub] 20231214

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38097671
Odkazy

PubMed 38097671
DOI 10.1038/s41574-023-00926-0
PII: 10.1038/s41574-023-00926-0
Knihovny.cz E-zdroje

Adult and paediatric patients with pathogenic variants in the gene encoding succinate dehydrogenase (SDH) subunit B (SDHB) often have locally aggressive, recurrent or metastatic phaeochromocytomas and paragangliomas (PPGLs). Furthermore, SDHB PPGLs have the highest rates of disease-specific morbidity and mortality compared with other hereditary PPGLs. PPGLs with SDHB pathogenic variants are often less differentiated and do not produce substantial amounts of catecholamines (in some patients, they produce only dopamine) compared with other hereditary subtypes, which enables these tumours to grow subclinically for a long time. In addition, SDHB pathogenic variants support tumour growth through high levels of the oncometabolite succinate and other mechanisms related to cancer initiation and progression. As a result, pseudohypoxia and upregulation of genes related to the hypoxia signalling pathway occur, promoting the growth, migration, invasiveness and metastasis of cancer cells. These factors, along with a high rate of metastasis, support early surgical intervention and total resection of PPGLs, regardless of the tumour size. The treatment of metastases is challenging and relies on either local or systemic therapies, or sometimes both. This Consensus statement should help guide clinicians in the diagnosis and management of patients with SDHB PPGLs.

3rd Department of Medicine Department of Endocrinology and Metabolism of the 1st Faculty of Medicine Charles University and General University Hospital Prague Czech Republic

Centro de Investigación Biomédica en Red de Enfermedades Raras Madrid Spain

Clinical Research Center Ijinkai Takeda General Hospital Kyoto Japan

Clinical Research Institute of Endocrinology and Metabolism National Hospital Organization Kyoto Medical Center and Endocrine Center Kyoto Japan

Columbia University Irving Medical Center New York City NY USA

Department of Diabetes Endocrinology and Metabolism National Center for Global Health and Medicine Tokyo Japan

Department of Endocrine Surgery Aix Marseille University Conception Hospital Marseille France

Department of Endocrinology Diabetology and Clinical Nutrition University Hospital Zurich and University of Zurich Zurich Switzerland

Department of Endocrinology Royal North Shore Hospital and Cancer Genetics Laboratory Kolling Institute University of Sydney Sydney New South Wales Australia

Department of Endocrinology Seth GS Medical College and KEM Hospital Mumbai Maharashtra India

Department of Endocrinology University Medical Center Groningen Groningen Netherlands

Department of Internal Medicine 1 University Hospital P J Šafárik University Košice Slovakia

Department of Internal Medicine Radboud University Medical Center Nijmegen Netherlands

Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada

Department of Medical Genetics University of Cambridge Cambridge Biomedical Campus Cambridge UK

Department of Medical Sciences Uppsala University Uppsala Sweden

Department of Medicine 4 University Hospital Ludwig Maximilians University Munich Munich Germany

Department of Medicine Division of Endocrinology and Diabetes University Hospital University of Würzburg Würzburg Germany

Department of Medicine St Vincent's Hospital Medical School Melbourne Victoria Australia

Department of Nuclear Medicine Aix Marseille University La Timone University Hospital Marseille France

Department of Nuclear Medicine and Molecular Imaging Institut de Cancérologie de Strasbourg Europe IPHC UMR 7178 CNRS University of Strasbourg Strasbourg France

Department of Oncogenetics and Cancer Genomic Medicine AP HP Hôpital européen Georges Pompidou Paris France

Department of Otolaryngology Head and Neck Surgery Icahn School of Medicine at Mount Sinai New York NY USA

Department of Pathology University Medical Center Utrecht Utrecht Netherlands

Department of Surgery UCSF Mount Zion San Francisco CA USA

Department of Surgical Oncology MD Anderson Cancer Center Houston TX USA

Developmental Therapeutics Branch Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda MD USA

Division of Endocrine Surgery Department of Surgery Mayo Clinic Rochester MN USA

Division of Endocrinology and Metabolism Department of Medicine University of Florida Gainesville FL USA

Division of Endocrinology Department of Medicine and Research Center Centre hospitalier de l'Université de Montréal Montréal Québec Canada

Division of Endocrinology Department of Medicine Centre de recherche du Centre hospitalier de l'Université de Montréal Université de Montréal Montréal Canada

Division of Endocrinology Diabetes Metabolism and Nutrition Mayo Clinic Rochester MN USA

Green Templeton College University of Oxford Oxford UK

Hereditary Endocrine Cancer Group Spanish National Cancer Research Center Madrid Spain

Hypertension Unit Hôpital Européen Georges Pompidou Assistance Publique Hôpitaux de Paris Paris France

Institute of Clinical Chemistry and Laboratory Medicine University Hospital Carl Gustav Carus at the TU Dresden Dresden Germany

James J Peters VA Medical Center New York City NY USA

Malcom Randall VA Medical Center Gainesville FL USA

Molecular Imaging and Therapy Service Radiology Department Memorial Sloan Kettering Cancer Center New York NY USA

Molecular Imaging Program National Cancer Institute National Institutes of Health Bethesda MD USA

NET Unit Royal Free Hospital London UK

NSW Health Pathology Department of Anatomical Pathology Royal North Shore Hospital St Leonards New South Wales Australia

Princess Máxima Center for paediatric oncology Utrecht Netherlands

Research Center CHU Sainte Justine and Dept of Paediatrics University of Montreal Montreal Québec Canada

Section on Medical Neuroendocrinology Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda MD USA

Sorbonne University Department of Nuclear Medicine Pitié Salpêtrière Paris France

Stanford University School of Medicine Department of Physician Assistant Studies Stanford CA USA

Surgical Oncology Program National Cancer Institute National Institutes of Health Bethesda MD USA

Université Paris Cité Inserm PARCC Equipe Labellisée par la Ligue contre le Cancer Paris France

University of Sydney Sydney NSW Australia Cancer Diagnosis and Pathology Group Kolling Institute of Medical Research Royal North Shore Hospital St Leonards New South Wales Australia

Zobrazit více v PubMed

Kastriti, M. E. et al. Schwann cell precursors generate the majority of chromaffin cells in zuckerkandl organ and some sympathetic neurons in paraganglia. Front. Mol. Neurosci. 12, 6 (2019). PubMed PMC

Furlan, A. et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357, eaal3753 (2017). PubMed PMC

Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000). PubMed

Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001). PubMed PMC

Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26, 268–270 (2000). PubMed

Burnichon, N. et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 19, 3011–3020 (2010). PubMed PMC

Andrews, K. A. et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J. Med. Genet. 55, 384–394 (2018). PubMed

Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). PubMed PMC

Lenders, J. W. et al. Pheochromocytoma and paraganglioma: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 99, 1915–1942 (2014). PubMed

Taieb, D. et al. Current approaches and recent developments in the management of head and neck paragangliomas. Endocr. Rev. 35, 795–819 (2014). PubMed PMC

Gimenez-Roqueplo, A. P. et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA Investigators. J. Clin. Endocrinol. Metab. 98, E162–E173 (2013). PubMed

Assadipour, Y. et al. SDHB mutation status and tumor size but not tumor grade are important predictors of clinical outcome in pheochromocytoma and abdominal paraganglioma. Surgery 161, 230–239 (2017). PubMed

Timmers, H. J. et al. Staging and functional characterization of pheochromocytoma and paraganglioma by PubMed PMC

Turkova, H. et al. Characteristics and outcomes of metastatic SDHB and sporadic pheochromocytoma/paraganglioma: an National Institutes of Health Study. Endocr. Pract. 22, 302–314 (2016). PubMed

Gimenez-Roqueplo, A. P. et al. Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J. Clin. Endocrinol. Metab. 87, 4771–4774 (2002). PubMed

Gimenez-Roqueplo, A. P. et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 63, 5615–5621 (2003). PubMed

Schovanek, J. et al. The size of the primary tumor and age at initial diagnosis are independent predictors of the metastatic behavior and survival of patients with SDHB-related pheochromocytoma and paraganglioma: a retrospective cohort study. BMC Cancer 14, 523 (2014). PubMed PMC

Brouwers, F. M. et al. High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J. Clin. Endocrinol. Metab. 91, 4505–4509 (2006). PubMed

Pamporaki, C. et al. Prediction of metastatic pheochromocytoma and paraganglioma: a machine learning modelling study using data from a cross-sectional cohort. Lancet Digit. Health 5, e551–e559 (2023). PubMed

Rijken, J. A. et al. Increased mortality in SDHB but not in SDHD pathogenic variant carriers. Cancers 11, 103 (2019). PubMed PMC

Papathomas, T. G. et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur. J. Endocrinol. 170, 1–12 (2013). PubMed

Pasini, B. et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur. J. Hum. Genet. 16, 79–88 (2008). PubMed

Denes, J. et al. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J. Clin. Endocrinol. Metab. 100, E531–E541 (2015). PubMed

Eisenhofer, G. et al. Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocr. Relat. Cancer 18, 97–111 (2011). PubMed

Amar, L. et al. International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers. Nat. Rev. Endocrinol. 17, 435–444 (2021). PubMed PMC

Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 1490 (2004). PubMed

Lenders, J. W. M. et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J. Hypertens. 38, 1443–1456 (2020). PubMed PMC

Ben Aim, L. et al. International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma. J. Med. Genet. 59, 785–792 (2022). PubMed

Benn, D. E. et al. Bayesian approach to determining penetrance of pathogenic SDH variants. J. Med. Genet. 55, 729–734 (2018). PubMed

Daniel, E., Jones, R., Bull, M. & Newell-Price, J. Rapid-sequence MRI for long-term surveillance for paraganglioma and phaeochromocytoma in patients with succinate dehydrogenase mutations. Eur. J. Endocrinol. 175, 561–570 (2016). PubMed

Eijkelenkamp, K. et al. Calculating the optimal surveillance for head and neck paraganglioma in SDHB-mutation carriers. Fam. Cancer 16, 123–130 (2017). PubMed

Jafri, M. et al. Evaluation of SDHB, SDHD and VHL gene susceptibility testing in the assessment of individuals with non-syndromic phaeochromocytoma, paraganglioma and head and neck paraganglioma. Clin. Endocrinol. 78, 898–906 (2013).

Jasperson, K. W. et al. Role of rapid sequence whole-body MRI screening in SDH-associated hereditary paraganglioma families. Fam. Cancer 13, 257–265 (2014). PubMed

Jochmanova, I. et al. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J. Cancer Res. Clin. Oncol. 143, 1421–1435 (2017). PubMed PMC

Martins, R. G. et al. Surveillance of succinate dehydrogenase gene mutation carriers: insights from a nationwide cohort. Clin. Endocrinol. 92, 545–553 (2020).

Niemeijer, N. D. et al. The phenotype of SDHB germline mutation carriers: a nationwide study. Eur. J. Endocrinol. 177, 115–125 (2017). PubMed

Tufton, N., Sahdev, A. & Akker, S. A. Radiological surveillance screening in asymptomatic succinate dehydrogenase mutation carriers. J. Endocr. Soc. 1, 897–907 (2017). PubMed PMC

Tufton, N., Sahdev, A., Drake, W. M. & Akker, S. A. Can subunit-specific phenotypes guide surveillance imaging decisions in asymptomatic SDH mutation carriers? Clin. Endocrinol. 90, 31–46 (2019).

Benn, D. E., Richardson, A. L., Marsh, D. J. & Robinson, B. G. Genetic testing in pheochromocytoma- and paraganglioma-associated syndromes. Ann. N. Y. Acad. Sci. 1073, 104–111 (2006). PubMed

Eisenhofer, G. et al. Biochemical diagnosis of chromaffin cell tumors in patients at high and low risk of disease: plasma versus urinary free or deconjugated o-methylated catecholamine metabolites. Clin. Chem. 64, 1646–1656 (2018). PubMed

Eisenhofer, G. et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur. J. Cancer 48, 1739–1749 (2012). PubMed

Saie, C. et al. Screening of a large cohort of asymptomatic SDHx mutation carriers in routine practice. J. Clin. Endocrinol. Metab. 106, e1301–e1315 (2021). PubMed

Rao, D. et al. Plasma methoxytyramine: clinical utility with metanephrines for diagnosis of pheochromocytoma and paraganglioma. Eur. J. Endocrinol. 177, 103–113 (2017). PubMed PMC

Tufton, N., White, G., Drake, W. M., Sahdev, A. & Akker, S. A. Diffusion-weighted imaging (DWI) highlights SDHB-related tumours: a pilot study. Clin. Endocrinol. 91, 104–109 (2019).

Gravel, G. et al. The value of a rapid contrast-enhanced angio-MRI protocol in the detection of head and neck paragangliomas in SDHx mutations carriers: a retrospective study on behalf of the PGL.EVA investigators. Eur. Radiol. 26, 1696–1704 (2016). PubMed

Janssen, I. et al. Superiority of [ PubMed PMC

Taieb, D. et al. European Association of Nuclear Medicine practice guideline/Society of Nuclear Medicine and Molecular Imaging procedure standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur. J. Nucl. Med. Mol. Imaging 46, 2112–2137 (2019). PubMed PMC

Carrasquillo, J. A. et al. Imaging of pheochromocytoma and paraganglioma. J. Nucl. Med. 62, 1033–1042 (2021). PubMed PMC

Kong, G. et al. The role of PubMed

Jha, A. et al. Superiority of PubMed

Buffet, A. et al. Positive impact of genetic test on the management and outcome of patients with paraganglioma and/or pheochromocytoma. J. Clin. Endocrinol. Metab. 104, 1109–1118 (2019). PubMed

Davidoff, D. F. et al. Surveillance improves outcomes for carriers of SDHB pathogenic variants: a multicenter study. J. Clin. Endocrinol. Metab. 107, e1907–e1916 (2022). PubMed PMC

Raygada, M., King, K. S., Adams, K. T., Stratakis, C. A. & Pacak, K. Counseling patients with succinate dehydrogenase subunit defects: genetics, preventive guidelines, and dealing with uncertainty. J. Pediatr. Endocrinol. Metab. 27, 837–844 (2014). PubMed PMC

Athens, B. A. et al. A systematic review of randomized controlled trials to assess outcomes of genetic counseling. J. Genet. Couns. 26, 902–933 (2017). PubMed PMC

Yip, L. et al. American Association of Endocrine Surgeons guidelines for adrenalectomy: executive summary. JAMA Surg. 157, 870–877 (2022). PubMed PMC

Lee, J. et al. Open and laparoscopic adrenalectomy: analysis of the National Surgical Quality Improvement Program. J. Am. Coll. Surg. 206, 953–959 (2008). PubMed

Li, J., Wang, Y., Chang, X. & Han, Z. Laparoscopic adrenalectomy (LA) vs open adrenalectomy (OA) for pheochromocytoma (PHEO): a systematic review and meta-analysis. Eur. J. Surg. Oncol. 46, 991–998 (2020). PubMed

Zelinka, T. et al. Metastatic pheochromocytoma: does the size and age matter? Eur. J. Clin. Invest. 41, 1121–1128 (2011). PubMed PMC

Dickson, P. V. et al. Posterior retroperitoneoscopic adrenalectomy is a safe and effective alternative to transabdominal laparoscopic adrenalectomy for pheochromocytoma. Surgery 150, 452–458 (2011). PubMed

Hu, H. et al. En bloc resection with major blood vessel reconstruction for locally invasive retroperitoneal paragangliomas: a 15-year experience with literature review. World J. Surg. 41, 997–1004 (2017). PubMed

Abadin, S. S. et al. Impact of surgical resection for subdiaphragmatic paragangliomas. World J. Surg. 38, 733–741 (2014). PubMed

Cui, Y. et al. Local-regional recurrence of pheochromocytoma/paraganglioma: characteristics, risk factors and outcomes. Front. Endocrinol. 12, 762548 (2021).

Li, M. L., Fitzgerald, P. A., Price, D. C. & Norton, J. A. Iatrogenic pheochromocytomatosis: a previously unreported result of laparoscopic adrenalectomy. Surgery 130, 1072–1077 (2001). PubMed

Ricketts, C. J. et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum. Mutat. 31, 41–51 (2010). PubMed

Hamidi, O. et al. Malignant pheochromocytoma and paraganglioma: 272 patients over 55 years. J. Clin. Endocrinol. Metab. 102, 3296–3305 (2017). PubMed PMC

Roman-Gonzalez, A. et al. Impact of surgical resection of the primary tumor on overall survival in patients with metastatic pheochromocytoma or sympathetic paraganglioma. Ann. Surg. 268, 172–178 (2018). PubMed

Fishbein, L. et al. The North American Neuroendocrine Tumor Society consensus guidelines for surveillance and management of metastatic and/or unresectable pheochromocytoma and paraganglioma. Pancreas 50, 469–493 (2021). PubMed

Livingstone, M. et al. Hemodynamic stability during pheochromocytoma resection: lessons learned over the last two decades. Ann. Surg. Oncol. 22, 4175–4180 (2015). PubMed

Berends, A. M. A., Kerstens, M. N., Lenders, J. W. M. & Timmers, H. Approach to the patient: perioperative management of the patient with pheochromocytoma or sympathetic paraganglioma. J. Clin. Endocrinol. Metab. 105, dgaa441 (2020). PubMed

Taieb, D. et al. Clinical consensus guideline on the management of phaeochromocytoma and paraganglioma in patients harbouring germline SDHD pathogenic variants. Lancet Diabetes Endocrinol. 11, 345–361 (2023). PubMed

Groeben, H. et al. International multicentre review of perioperative management and outcome for catecholamine-producing tumours. Br. J. Surg. 107, e170–e178 (2020). PubMed

Buisset, C. et al. Pheochromocytoma surgery without systematic preoperative pharmacological preparation: insights from a referral tertiary center experience. Surg. Endosc. 35, 728–735 (2021). PubMed

Shao, Y. et al. Preoperative alpha blockade for normotensive pheochromocytoma: is it necessary? J. Hypertens. 29, 2429–2432 (2011). PubMed

Brunaud, L. et al. Both preoperative alpha and calcium channel blockade impact intraoperative hemodynamic stability similarly in the management of pheochromocytoma. Surgery 156, 1410–1417 (2014). PubMed

Ulchaker, J. C., Goldfarb, D. A., Bravo, E. L. & Novick, A. C. Successful outcomes in pheochromocytoma surgery in the modern era. J. Urol. 161, 764–767 (1999). PubMed

Groeben, H. et al. Perioperative Perioperative alpha-receptor blockade in phaeochromocytoma surgery: an observational case series. Br. J. Anaesth. 118, 182–189 (2017).-receptor blockade in phaeochromocytoma surgery: an observational case series. Br. J. Anaesth. 118, 182–189 (2017). PubMed

Schimmack, S. et al. Meta-analysis of α-blockade versus no blockade before adrenalectomy for phaeochromocytoma. Br. J. Surg. 107, e102–e108 (2020). PubMed

Buitenwerf, E. et al. Efficacy of α-blockers on hemodynamic control during pheochromocytoma resection: a randomized controlled trial. J. Clin. Endocrinol. Metab. 105, 2381–2391 (2020). PubMed

Fassnacht, M. et al. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1476–1490 (2020). PubMed

Neumann, H. P. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292, 943–951 (2004). PubMed

Lloyd, S., Obholzer, R. & Tysome, J.; BSBS Consensus Group. British Skull Base Society clinical consensus document on management of head and neck paragangliomas. Otolaryngol. Head Neck Surg. 163, 400–409 (2020). PubMed

McCrary, H. C. et al. Characterization of malignant head and neck paragangliomas at a single institution across multiple decades. JAMA Otolaryngol. Head Neck Surg. 145, 641–646 (2019). PubMed PMC

Richter, S. et al. Head/neck paragangliomas: focus on tumor location, mutational status and plasma methoxytyramine. Endocr. Relat. Cancer 29, 213–224 (2022). PubMed PMC

Timmers, H. J., Gimenez-Roqueplo, A. P., Mannelli, M. & Pacak, K. Clinical aspects of SDHx-related pheochromocytoma and paraganglioma. Endocr. Relat. Cancer 16, 391–400 (2009). PubMed PMC

Rijken, J. A. et al. Nationwide study of patients with head and neck paragangliomas carrying SDHB germline mutations. BJS Open 2, 62–69 (2018). PubMed PMC

Wanna, G. B. et al. Subtotal resection for management of large jugular paragangliomas with functional lower cranial nerves. Otolaryngol. Head Neck Surg. 151, 991–995 (2014). PubMed

Manzoor, N. F. et al. Contemporary management of jugular paragangliomas with neural preservation. Otolaryngol. Head Neck Surg. 164, 391–398 (2021). PubMed

Sethi, R. V., Sethi, R. K., Herr, M. W. & Deschler, D. G. Malignant head and neck paragangliomas: treatment efficacy and prognostic indicators. Am. J. Otolaryngol. 34, 431–438 (2013). PubMed

Moskovic, D. J. et al. Malignant head and neck paragangliomas: is there an optimal treatment strategy? Head Neck Oncol. 2, 23 (2010). PubMed PMC

Moore, M. G., Netterville, J. L., Mendenhall, W. M., Isaacson, B. & Nussenbaum, B. Head and neck paragangliomas: an update on evaluation and management. Otolaryngol. Head Neck Surg. 154, 597–605 (2016). PubMed

Ivan, M. E. et al. A meta-analysis of tumor control rates and treatment-related morbidity for patients with glomus jugulare tumors. J. Neurosurg. 114, 1299–1305 (2011). PubMed

Gaynor, B. G., Elhammady, M. S., Jethanamest, D., Angeli, S. I. & Aziz-Sultan, M. A. Incidence of cranial nerve palsy after preoperative embolization of glomus jugulare tumors using Onyx. J. Neurosurg. 120, 377–381 (2014). PubMed

Linskey, M. E. et al. Stroke risk after abrupt internal carotid artery sacrifice: accuracy of preoperative assessment with balloon test occlusion and stable xenon-enhanced CT. AJNR Am. J. Neuroradiol. 15, 829–843 (1994). PubMed PMC

Tarr, R. W. et al. Complications of preoperative balloon test occlusion of the internal carotid arteries: experience in 300 cases. Skull Base Surg. 1, 240–244 (1991). PubMed PMC

Mathis, J. M. et al. Temporary balloon test occlusion of the internal carotid artery: experience in 500 cases. AJNR Am. J. Neuroradiol. 16, 749–754 (1995). PubMed PMC

Suarez, C. et al. Carotid body paragangliomas: a systematic study on management with surgery and radiotherapy. Eur. Arch. Otorhinolaryngol. 271, 23–34 (2014). PubMed

Suarez, C. et al. Jugular and vagal paragangliomas: systematic study of management with surgery and radiotherapy. Head Neck 35, 1195–1204 (2013). PubMed

Makis, W., McCann, K., McEwan, A. J. & Sawyer, M. B. Combined treatment with 131I-MIBG and sunitinib induces remission in a patient with metastatic paraganglioma due to hereditary paraganglioma-pheochromocytoma syndrome from an SDHB mutation. Clin. Nucl. Med. 41, 204–206 (2016). PubMed

Ibuki, N. et al. A pheochromocytoma of urinary bladder treated with neoadjuvant chemotherapy [Japanese]. Hinyokika Kiyo 55, 765–768 (2009). PubMed

Visani, J. et al. Surgical treatment of metastatic pheochromocytomas of the spine: a systematic review. J. Integr. Neurosci. 20, 499–507 (2021). PubMed

Bizzarri, N. et al. Peritoneal carcinomatosis from ovarian paraganglioma: report of a rare case and systematic review of the literature. J. Obstet. Gynaecol. Res. 44, 1682–1692 (2018). PubMed

Amar, L. et al. MANAGEMENT OF ENDOCRINE DISEASE: recurrence or new tumors after complete resection of pheochromocytomas and paragangliomas: a systematic review and meta-analysis. Eur. J. Endocrinol. 175, R135–R145 (2016). PubMed

Holscher, I., van den Berg, T. J., Dreijerink, K. M. A., Engelsman, A. F. & Nieveen van Dijkum, E. J. M. Recurrence rate of sporadic pheochromocytomas after curative adrenalectomy: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 106, 588–597 (2021). PubMed

Wachtel, H. et al. Predicting metastatic potential in pheochromocytoma and paraganglioma: a comparison of PASS and GAPP scoring systems. J. Clin. Endocrinol. Metab. 105, 4661–4670 (2020).

Eisenhofer, G. et al. Biochemical and clinical manifestations of dopamine-producing paragangliomas: utility of plasma methoxytyramine. J. Clin. Endocrinol. Metab. 90, 2068–2075 (2005). PubMed

Pamporaki, C. et al. Determinants of disease-specific survival in patients with and without metastatic pheochromocytoma and paraganglioma. Eur. J. Cancer 169, 32–41 (2022). PubMed

Fishbein, L. et al. External beam radiation therapy (EBRT) for patients with malignant pheochromocytoma and non-head and -neck paraganglioma: combination with PubMed PMC

Mesko, S. et al. Spine stereotactic radiosurgery for metastatic pheochromocytoma. Cureus 11, e4742 (2019). PubMed PMC

Ayala-Ramirez, M. et al. Bone metastases and skeletal-related events in patients with malignant pheochromocytoma and sympathetic paraganglioma. J. Clin. Endocrinol. Metab. 98, 1492–1497 (2013). PubMed PMC

Gravel, G. et al. Prevention of serious skeletal-related events by interventional radiology techniques in patients with malignant paraganglioma and pheochromocytoma. Endocrine 59, 547–554 (2018). PubMed

Pacak, K. et al. Radiofrequency ablation: a novel approach for treatment of metastatic pheochromocytoma. J. Natl Cancer Inst. 93, 648–649 (2001). PubMed

Venkatesan, A. M. et al. Radiofrequency ablation of metastatic pheochromocytoma. J. Vasc. Interv. Radiol. 20, 1483–1490 (2009). PubMed PMC

Zhang, W. et al. Computed tomography-guided cryoablation for adrenal pheochromocytoma: safety and clinical effectiveness. Surg. Laparosc. Endosc. Percutan. Tech. 29, 409–412 (2019). PubMed

Kohlenberg, J. et al. Efficacy and safety of ablative therapy in the treatment of patients with metastatic pheochromocytoma and paraganglioma. Cancers 11, 195 (2019). PubMed PMC

Deljou, A. et al. Hemodynamic instability during percutaneous ablation of extra-adrenal metastases of pheochromocytoma and paragangliomas: a case series. BMC Anesthesiol. 18, 158 (2018). PubMed PMC

Hidaka, S. et al. Malignant pheochromocytoma with liver metastasis treated by transcatheter arterial chemo-embolization (TACE). Intern. Med. 49, 645–651 (2010). PubMed

Hescot, S. et al. One-year progression-free survival of therapy-naive patients with malignant pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 98, 4006–4012 (2013). PubMed

Hescot, S. et al. Prognosis of malignant pheochromocytoma and paraganglioma (MAPP-Prono study): an ENS@T retrospective study. J. Clin. Endocrinol. Metab. 104, 2367–2374 (2019). PubMed

Dhir, M. et al. Clinical predictors of malignancy in patients with pheochromocytoma and paraganglioma. Ann. Surg. Oncol. 24, 3624–3630 (2017). PubMed

Jochmanova, I. et al. Clinical characteristics and outcomes of SDHB-related pheochromocytoma and paraganglioma in children and adolescents. J. Cancer Res. Clin. Oncol. 146, 1051–1063 (2020). PubMed PMC

Nolting, S. et al. Current management of pheochromocytoma/paraganglioma: a guide for the practicing clinician in the era of precision medicine. Cancers 11, 1505 (2019). PubMed PMC

Zheng, L. et al. Hypertensive crisis during microwave ablation of adrenal neoplasms: a retrospective analysis of predictive factors. J. Vasc. Interv. Radiol. 30, 1343–1350 (2019). PubMed

Eisenhofer, G. et al. Adverse drug reactions in patients with phaeochromocytoma: incidence, prevention and management. Drug Saf. 30, 1031–1062 (2007). PubMed

Pacak, K. Preoperative management of the pheochromocytoma patient. J. Clin. Endocrinol. Metab. 92, 4069–4079 (2007). PubMed

Nazari, M. A., Rosenblum, J. S., Haigney, M. C., Rosing, D. R. & Pacak, K. Pathophysiology and acute management of tachyarrhythmias in pheochromocytoma: JACC review topic of the week. J. Am. Coll. Cardiol. 76, 451–464 (2020). PubMed PMC

Talvacchio, S., Nazari, M. A. & Pacak, K. Supportive management of patients with pheochromocytoma/paraganglioma undergoing noninvasive treatment. Curr. Opin. Endocrinol. Diabetes Obes. 29, 294–301 (2022). PubMed PMC

Huang, H. et al. Treatment of malignant pheochromocytoma/paraganglioma with cyclophosphamide, vincristine, and dacarbazine: recommendation from a 22-year follow-up of 18 patients. Cancer 113, 2020–2028 (2008). PubMed

Averbuch, S. D. et al. Malignant pheochromocytoma: effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann. Intern. Med. 109, 267–273 (1988). PubMed

Niemeijer, N. D., Alblas, G., van Hulsteijn, L. T., Dekkers, O. M. & Corssmit, E. P. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis. Clin. Endocrinol. 81, 642–651 (2014).

Asai, S., Katabami, T., Tsuiki, M., Tanaka, Y. & Naruse, M. Controlling tumor progression with cyclophosphamide, vincristine, and dacarbazine treatment improves survival in patients with metastatic and unresectable malignant pheochromocytomas/paragangliomas. Horm. Cancer 8, 108–118 (2017). PubMed PMC

Deutschbein, T. et al. Treatment of malignant phaeochromocytoma with a combination of cyclophosphamide, vincristine and dacarbazine: own experience and overview of the contemporary literature. Clin. Endocrinol. 82, 84–90 (2015).

Tanabe, A. et al. Combination chemotherapy with cyclophosphamide, vincristine, and dacarbazine in patients with malignant pheochromocytoma and paraganglioma. Horm. Cancer 4, 103–110 (2013). PubMed PMC

Jawed, I. et al. Continued tumor reduction of metastatic pheochromocytoma/paraganglioma harboring succinate dehydrogenase subunit b mutations with cyclical chemotherapy. Cell Mol. Neurobiol. 38, 1099–1106 (2018). PubMed PMC

Fishbein, L. et al. SDHB mutation carriers with malignant pheochromocytoma respond better to CVD. Endocr. Relat. Cancer 24, L51–L55 (2017). PubMed

Pacheco, S. T. et al. Metastatic pheochromocytoma and paraganglioma: a retrospective multicentre analysis on prognostic and predictive factors to chemotherapy. Ecancermedicalscience 17, 1523 (2023). PubMed PMC

Fischer, A. et al. Responses to systemic therapy in metastatic pheochromocytoma/paraganglioma - a retrospective multi-center cohort study. Eur. J. Endocrinol. https://doi.org/10.1093/ejendo/lvad146 (2023). PubMed DOI

Shah, M. H. et al. Neuroendocrine and adrenal tumors, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 19, 839–868 (2021). PubMed

Benn, D. E. et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J. Clin. Endocrinol. Metab. 91, 827–836 (2006). PubMed

Petrak, O. et al. Blood pressure profile, catecholamine phenotype, and target organ damage in pheochromocytoma/paraganglioma. J. Clin. Endocrinol. Metab. 104, 5170–5180 (2019). PubMed

Gonias, S. et al. Phase II study of high-dose [ PubMed PMC

Pryma, D. A. et al. Efficacy and safety of high-specific-activity PubMed PMC

Makis, W., McCann, K. & McEwan, A. J. The challenges of treating paraganglioma patients with PubMed PMC

Zandee, W. T. et al. Treatment of inoperable or metastatic paragangliomas and pheochromocytomas with peptide receptor radionuclide therapy using PubMed

van Hulsteijn, L. T., Niemeijer, N. D., Dekkers, O. M. & Corssmit, E. P.

Satapathy, S., Mittal, B. R. & Bhansali, A. Peptide receptor radionuclide therapy in the management of advanced pheochromocytoma and paraganglioma: a systematic review and meta-analysis. Clin. Endocrinol. 91, 718–727 (2019).

Nastos, K. et al. Peptide receptor radionuclide treatment and PubMed

Carrasquillo, J. A. et al. Systemic radiopharmaceutical therapy of pheochromocytoma and paraganglioma. J. Nucl. Med. 62, 1192–1199 (2021). PubMed PMC

Fonte, J. S. et al. False-negative PubMed PMC

Timmers, H. J. et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J. Clin. Oncol. 25, 2262–2269 (2007). PubMed

Timmers, H. J. et al. Comparison of PubMed PMC

Petenuci, J. et al. SDHB large deletions are associated with absence of MIBG uptake in metastatic lesions of malignant paragangliomas. Endocrine 72, 586–590 (2021). PubMed

Lynn, M. D. et al. Portrayal of pheochromocytoma and normal human adrenal medulla by m-[ PubMed

Donato, S., Simoes, H., Pinto, A. T., B, M. C. & Leite, V. SDHx-related pheochromocytoma/paraganglioma — genetic, clinical, and treatment outcomes in a series of 30 patients from a single center. Endocrine 65, 408–415 (2019). PubMed

Carrasquillo, J. A., Pandit-Taskar, N. & Chen, C. C. I-131 metaiodobenzylguanidine therapy of pheochromocytoma and paraganglioma. Semin. Nucl. Med. 46, 203–214 (2016). PubMed

Amar, L. et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J. Clin. Endocrinol. Metab. 92, 3822–3828 (2007). PubMed

Ayala-Ramirez, M. et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J. Clin. Endocrinol. Metab. 96, 717–725 (2011). PubMed

Noto, R. B. et al. Phase 1 study of high-specific-activity I-131 MIBG for metastatic and/or recurrent pheochromocytoma or paraganglioma. J. Clin. Endocrinol. Metab. 103, 213–220 (2018). PubMed

Safford, S. D. et al. Iodine -131 metaiodobenzylguanidine is an effective treatment for malignant pheochromocytoma and paraganglioma. Surgery 134, 956–962 (2003). PubMed

Thorpe, M. P. et al. Long-term outcomes of 125 patients with metastatic pheochromocytoma or paraganglioma treated with 131-I MIBG. J. Clin. Endocrinol. Metab. 105, e494–e501 (2020). PubMed

Elston, M. S. et al. Increased SSTR2A and SSTR3 expression in succinate dehydrogenase-deficient pheochromocytomas and paragangliomas. Hum. Pathol. 46, 390–396 (2015). PubMed

Kaemmerer, D. et al. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas. Oncotarget 8, 89958–89969 (2017). PubMed PMC

Fischer, A. et al. Metastatic pheochromocytoma and paraganglioma: somatostatin receptor 2 expression, genetics and therapeutic responses. J. Clin. Endocrinol. Metab. 108, 2676–2685 (2023). PubMed PMC

Roll, W. et al. Somatostatin receptor-targeted radioligand therapy in head and neck paraganglioma. World Neurosurg. 143, e391–e399 (2020). PubMed

Tsang, E. S., Funk, G., Leung, J., Kalish, G. & Kennecke, H. F. Supportive management of patients with advanced pheochromocytomas and paragangliomas receiving PRRT. Curr. Oncol. 28, 2823–2829 (2021). PubMed PMC

Pinato, D. J. et al. Peptide receptor radionuclide therapy for metastatic paragangliomas. Med. Oncol. 33, 47 (2016). PubMed

Kolasinska-Cwikla, A. et al. A clinical efficacy of PRRT in patients with advanced, nonresectable, paraganglioma-pheochromocytoma, related to SDHx gene mutation. J. Clin. Med. 8, 952 (2019). PubMed PMC

Vyakaranam, A. R. et al. Favorable outcome in patients with pheochromocytoma and paraganglioma treated with PubMed PMC

Hadoux, J. et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int. J. Cancer 135, 2711–2720 (2014). PubMed

Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009). PubMed

O, J. H., Lodge, M. A. & Wahl, R. L. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology 280, 576–584 (2016). PubMed

Hegi, M. E. et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J. Clin. Oncol. 26, 4189–4199 (2008). PubMed

Zhou, Y., Cui, Y., Zhang, D. & Tong, A. Efficacy and safety of tyrosine kinase inhibitors in patients with metastatic pheochromocytomas/paragangliomas. J. Clin. Endocrinol. Metab. 108, 755–766 (2023). PubMed

O’Kane, G. M. et al. A phase 2 trial of sunitinib in patients with progressive paraganglioma or pheochromocytoma: the SNIPP trial. Br. J. Cancer 120, 1113–1119 (2019). PubMed PMC

Ayala-Ramirez, M. et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J. Clin. Endocrinol. Metab. 97, 4040–4050 (2012). PubMed PMC

Baudin, E. et al. 567O_PR — First international randomized study in malignant progressive pheochromocytoma and paragangliomas (FIRSTMAPPP): an academic double-blind trial investigating sunitinib. Ann. Oncol. 32, S621–S625 (2021).

Jimenez C, P. M., Busaidy N, Habra MA, Waguespack S, Jessop A. A phase 2 study to evaluate the effects of cabozantinib in patients with unresectable metastatic pheochromocytomas and paragangliomas. International Symposium on Pheochromocytoma and Paraganglioma (Sydney, Australia, 2017).

Naing, A. et al. Phase 2 study of pembrolizumab in patients with advanced rare cancers. J. Immunother. Cancer 8, e000347 (2020). PubMed PMC

Jimenez, C. et al. Phase II clinical trial of pembrolizumab in patients with progressive metastatic pheochromocytomas and paragangliomas. Cancers 12, 2307 (2020). PubMed PMC

Caplin, M. E. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 371, 224–233 (2014). PubMed

Pavel, M. et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 844–860 (2020). PubMed

Rinke, A. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27, 4656–4663 (2009). PubMed

Greenberg, S. E. et al. Tumor detection rates in screening of individuals with SDHx-related hereditary paraganglioma-pheochromocytoma syndrome. Genet. Med. 22, 2101–2107 (2020). PubMed PMC

Hes, F. J. et al. Low penetrance of a SDHB mutation in a large Dutch paraganglioma family. BMC Med. Genet. 11, 92 (2010). PubMed PMC

Papathomas, T. G. et al. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod. Pathol. 28, 807–821 (2015). PubMed

Pasini, B. & Stratakis, C. A. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J. Intern. Med. 266, 19–42 (2009). PubMed

Rijken, J. A. et al. Low penetrance of paraganglioma and pheochromocytoma in an extended kindred with a germline SDHB exon 3 deletion. Clin. Genet. 89, 128–132 (2016). PubMed

Schiavi, F. et al. Are we overestimating the penetrance of mutations in SDHB? Hum. Mutat. 31, 761–762 (2010). PubMed

Solis, D. C. et al. Penetrance and clinical consequences of a gross SDHB deletion in a large family. Clin. Genet. 75, 354–363 (2009). PubMed PMC

Timmers, H. J. et al. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 92, 779–786 (2007). PubMed

van Hulsteijn, L. T., Dekkers, O. M., Hes, F. J., Smit, J. W. & Corssmit, E. P. Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: a systematic review and meta-analysis. J. Med. Genet. 49, 768–776 (2012). PubMed

Taieb, D., Jha, A., Treglia, G. & Pacak, K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr. Relat. Cancer 26, R627–R652 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...