SP3 Protocol for Proteomic Plant Sample Preparation Prior LC-MS/MS
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
33777071
PubMed Central
PMC7988192
DOI
10.3389/fpls.2021.635550
Knihovny.cz E-resources
- Keywords
- Arabidopsis thaliana, bottom-up, carboxylated magnetic beads, filter-aided sample preparation, mass spectrometry, protein cleanup, single-pot solid-phase-enhanced sample preparation, sodium dodecyl sulfate removal,
- Publication type
- Journal Article MeSH
Quantitative protein extraction from biological samples, as well as contaminants removal before LC-MS/MS, is fundamental for the successful bottom-up proteomic analysis. Four sample preparation methods, including the filter-aided sample preparation (FASP), two single-pot solid-phase-enhanced sample preparations (SP3) on carboxylated or HILIC paramagnetic beads, and protein suspension trapping method (S-Trap) were evaluated for SDS removal and protein digestion from Arabidopsis thaliana (AT) lysate. Finally, the optimized carboxylated SP3 workflow was benchmarked closely against the routine FASP. Ultimately, LC-MS/MS analyses revealed that regarding the number of identifications, number of missed cleavages, proteome coverage, repeatability, reduction of handling time, and cost per assay, the SP3 on carboxylated magnetic particles proved to be the best alternative for SDS and other contaminants removal from plant sample lysate. A robust and efficient 2-h SP3 protocol for a wide range of protein input is presented, benefiting from no need to adjust the amount of beads, binding and rinsing conditions, or digestion parameters.
See more in PubMed
Balliau T., Blein-Nicolas M., Zivy M. (2018). Evaluation of optimized tube-gel methods of sample preparation for large-scale plant proteomics. Proteomes 6:6. 10.3390/proteomes6010006, PMID: PubMed DOI PMC
Basisty N., Meyer J. G., Wei L., Gibson B. W., Schilling B. (2018). Simultaneous quantification of the acetylome and succinylome by “one-pot” affinity enrichment. Proteomics 18:e1800123. 10.1002/pmic.201800123, PMID: PubMed DOI PMC
Bielow C., Mastrobuoni G., Kempa S. (2016). Proteomics quality control: quality control software for MaxQuant results. J. Proteome Res. 15, 777–787. 10.1021/acs.jproteome.5b00780, PMID: PubMed DOI
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. 10.1038/nbt.1511, PMID: PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. 10.1021/pr101065j, PMID: PubMed DOI
Dagley L. F., Infusini G., Larsen R. H., Sandow J. J., Webb A. I. (2019). Universal solid-phase protein preparation (USP3) for bottom-up and top-down proteomics. J. Proteome Res. 18, 2915–2924. 10.1021/acs.jproteome.9b00217, PMID: PubMed DOI
Erde J., Loo R. R. O., Loo J. A. (2014). Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J. Proteome Res. 13, 1885–1895. 10.1021/pr4010019, PMID: PubMed DOI PMC
Erde J., Loo R. R. O., Loo J. A. (2017). Improving proteome coverage and sample recovery with enhanced FASP (eFASP) for quantitative proteomic experiments. Methods Mol. Biol. 1550, 11–18. 10.1007/978-1-4939-6747-6_2, PMID: PubMed DOI PMC
Feist P., Hummon A. B. (2015). Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int. J. Mol. Sci. 16, 3537–3563. 10.3390/ijms16023537, PMID: PubMed DOI PMC
Finehout E. J., Cantor J. R., Lee K. H. (2005). Kinetic characterization of sequencing grade modified trypsin. Proteomics 5, 2319–2321. 10.1002/pmic.200401268, PMID: PubMed DOI
Glatter T., Ahrné E., Schmidt A. (2015). Comparison of different sample preparation protocols reveals Lysis buffer-specific extraction biases in gram-negative bacteria and human cells. J. Proteome Res. 14, 4472–4485. 10.1021/acs.jproteome.5b00654, PMID: PubMed DOI
Gonzalez-Lozano M. A., Koopmans F., Paliukhovich I., Smit A. B., Li K. W. (2019). A fast and economical sample preparation protocol for interaction proteomics analysis. Proteomics 19:1900027. 10.1002/pmic.201900027, PMID: PubMed DOI
HaileMariam M., Eguez R. V., Singh H., Bekele S., Ameni G., Pieper R., et al. . (2018). S-Trap, an ultrafast sample-preparation approach for shotgun proteomics. J. Proteome Res. 17, 2917–2924. 10.1021/acs.jproteome.8b00505, PMID: PubMed DOI
Hartl M., Füßl M., Boersema P. J., Jost J., Kramer K., Bakirbas A., et al. . (2017). Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol. Syst. Biol. 13:949. 10.15252/msb.20177819, PMID: PubMed DOI PMC
Huber M. L., Sacco R., Parapatics K., Skucha A., Khamina K., Müller A. C., et al. . (2014). abFASP-MS: affinity-based filter-aided sample preparation mass spectrometry for quantitative analysis of chemically labeled protein complexes. J. Proteome Res. 13, 1147–1155. 10.1021/pr4009892, PMID: PubMed DOI PMC
Hughes C. S., Foehr S., Garfield D. A., Furlong E. E., Steinmetz L. M., Krijgsveld J. (2014). Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10:757. 10.15252/msb.20145625, PMID: PubMed DOI PMC
Hughes C. S., Moggridge S., Müller T., Sorensen P. H., Morin G. B., Krijgsveld J. (2019). Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85. 10.1038/s41596-018-0082-x, PMID: PubMed DOI
Hussein R. A., El-Anssary A. A. (2018). “Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants” in Herbal Medicine. ed. P. F. Builders (London, UK: Intechopen; ).
Jorrin-Novo J. V., Komatsu S., Sanchez-Lucas R., Rodríguez de Francisco L. E. (2019). Gel electrophoresis-based plant proteomics: past, present, and future. Happy 10th anniversary journal of proteomics! J. Proteome 198, 1–10. 10.1016/j.jprot.2018.08.016, PMID: PubMed DOI
Komatsu S. (2008). Plasma membrane proteome in Arabidopsis and rice. Proteomics 8, 4137–4145. 10.1002/pmic.200800088, PMID: PubMed DOI
Lewandowska D., Zhang R., Colas I., Uzrek N., Waugh R. (2019). Application of a sensitive and reproducible label-free proteomic approach to explore the proteome of individual meiotic-phase barley anthers. Front. Plant Sci. 10:393. 10.3389/fpls.2019.00393, PMID: PubMed DOI PMC
Li S., Cao X., Wang Y., Zhu Z., Zhang H., Xue S., et al. . (2017). A method for microalgae proteomics analysis based on modified filter-aided sample preparation. Appl. Biochem. Biotechnol. 183, 923–930. 10.1007/s12010-017-2473-9, PMID: PubMed DOI
Lipecka J., Chhuon C., Bourderioux M., Bessard M. -A., van Endert P., Edelman A., et al. . (2016). Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP). Proteomics 16, 1852–1857. 10.1002/pmic.201600103, PMID: PubMed DOI
Liu Y., Lu S., Liu K., Wang S., Huang L., Guo L. (2019). Proteomics: a powerful tool to study plant responses to biotic stress. Plant Methods 15:135. 10.1186/s13007-019-0515-8, PMID: PubMed DOI PMC
Ludwig K. R., Schroll M. M., Hummon A. B. (2018). Comparison of in-solution, FASP, and S-trap based digestion methods for bottom-up proteomic studies. J. Proteome Res. 17, 2480–2490. 10.1021/acs.jproteome.8b00235, PMID: PubMed DOI PMC
Lv B., Yang Q., Li D., Liang W., Song L. (2016). Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea. Sci. Rep. 6:29313. 10.1038/srep29313, PMID: PubMed DOI PMC
Min L., Choe L. H., Lee K. H. (2015). Improved protease digestion conditions for membrane protein detection. Electrophoresis 36, 1690–1698. 10.1002/elps.201400579, PMID: PubMed DOI PMC
Mo R., Yang M., Chen Z., Cheng Z., Yi X., Li C., et al. . (2015). Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803. J. Proteome Res. 14, 1275–1286. 10.1021/pr501275a, PMID: PubMed DOI
Moggridge S., Sorensen P. H., Morin G. B., Hughes C. S. (2018). Extending the compatibility of the SP3 paramagnetic bead processing approach for proteomics. J. Proteome Res. 17, 1730–1740. 10.1021/acs.jproteome.7b00913, PMID: PubMed DOI
Müller T., Kalxdorf M., Longuespée R., Kazdal D. N., Stenzinger A., Krijgsveld J. (2020). Automated sample preparation with SP3 for low-input clinical proteomics. Mol. Syst. Biol. 16:e9111. 10.15252/msb.20199111, PMID: PubMed DOI PMC
Nel A. J. M., Garnett S., Blackburn J. M., Soares N. C. (2015). Comparative reevaluation of FASP and enhanced FASP methods by LC-MS/MS. J. Proteome Res. 14, 1637–1642. 10.1021/pr501266c, PMID: PubMed DOI
Ni M. -W., Wang L., Chen W., Mou H. -Z., Zhou J., Zheng Z. -G. (2017). Modified filter-aided sample preparation (FASP) method increases peptide and protein identifications for shotgun proteomics. Rapid Commun. Mass Spectrom. 31, 171–178. 10.1002/rcm.7779, PMID: PubMed DOI
Niu L., Yuan H., Gong F., Wu X., Wang W. (2018). Protein extraction methods shape much of the extracted proteomes. Front. Plant Sci. 9:802. 10.3389/fpls.2018.00802, PMID: PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. . (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450. 10.1093/nar/gky1106, PMID: PubMed DOI PMC
Potriquet J., Laohaviroj M., Bethony J. M., Mulvenna J. (2017). A modified FASP protocol for high-throughput preparation of protein samples for mass spectrometry. PLoS One 12:e0175967. 10.1371/journal.pone.0175967, PMID: PubMed DOI PMC
Scheerlinck E., Dhaenens M., Van Soom A., Peelman L., De Sutter P., Van Steendam K., et al. . (2015). Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry. Anal. Biochem. 490, 14–19. 10.1016/j.ab.2015.08.018, PMID: PubMed DOI
Sielaff M., Kuharev J., Bohn T., Hahlbrock J., Bopp T., Tenzer S., et al. . (2017). Evaluation of FASP, SP3, and iST protocols for proteomic sample preparation in the low microgram range. J. Proteome Res. 16, 4060–4072. 10.1021/acs.jproteome.7b00433, PMID: PubMed DOI
Song G., Hsu P. Y., Walley J. W. (2018). Assessment and refinement of sample preparation methods for deep and quantitative plant proteome profiling. Proteomics 18:e1800220. 10.1002/pmic.201800220, PMID: PubMed DOI PMC
Stoychev S., Naicker P., Mamputha S., Buthelezi S., Gerber I., Westhuyzen C., et al. . (2018). Magnetic HILIC: An enabling & versatile tool for robust automated MS sample preparation workflows. Available at: https://resynbio.com/hilic/ (Accessed February 25, 2021).
Stoychev S., Naicker P., Mamputha S., Khumalo F., Gerber I., Westhuyzen C., et al. . (2017). Universal Unbiased pre-MS Clean-Up Using Magnetic HILIC Microparticles for SPE. Available at: https://resynbio.com/hilic/ (Accessed February 25, 2021).
Takáč T., Šamajová O., Šamaj J. (2017). Integrating cell biology and proteomic approaches in plants. J. Proteome 169, 165–175. 10.1016/j.jprot.2017.04.020, PMID: PubMed DOI
Tubaon R. M., Haddad P. R., Quirino J. P. (2017). Sample clean-up strategies for ESI mass spectrometry applications in bottom-up proteomics: trends from 2012 to 2016. Proteomics 17:1700011. 10.1002/pmic.201700011, PMID: PubMed DOI
Tyanova S., Cox J. (2018). Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol. Biol. 1711, 133–148. 10.1007/978-1-4939-7493-1_7, PMID: PubMed DOI
Wang W. -Q., Jensen O. N., Møller I. M., Hebelstrup K. H., Rogowska-Wrzesinska A. (2018). Evaluation of sample preparation methods for mass spectrometry-based proteomic analysis of barley leaves. Plant Methods 14:72. 10.1186/s13007-018-0341-4, PMID: PubMed DOI PMC
Wang W., Tai F., Chen S. (2008). Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J. Sep. Sci. 31, 2032–2039. 10.1002/jssc.200800087, PMID: PubMed DOI
Wiśniewski J. R. (2017). “Filter-aided sample preparation: the versatile and efficient method for proteomic analysis” in Methods in enzymology: Proteomics in Biology, Part A. Vol. 585. ed. Shukla A. K. (Cambridge, Massachusetts, USA: Academic Press, Elsevier: ). PubMed
Wiśniewski J. R. (2018). Filter-aided sample preparation for proteome analysis. Methods Mol. Biol. 1841, 3–10. 10.1007/978-1-4939-8695-8_1, PMID: PubMed DOI
Wiśniewski J. R. (2019). Filter aided sample preparation - a tutorial. Anal. Chim. Acta 1090, 23–30. 10.1016/j.aca.2019.08.032, PMID: PubMed DOI
Wiśniewski J. R., Gaugaz F. Z. (2015). Fast and sensitive total protein and peptide assays for proteomic analysis. Anal. Chem. 87, 4110–4116. 10.1021/ac504689z, PMID: PubMed DOI
Wiśniewski J. R., Mann M. (2012). Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal. Chem. 84, 2631–2637. 10.1021/ac300006b, PMID: PubMed DOI
Wiśniewski J. R., Ostasiewicz P., Mann M. (2011). High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 10, 3040–3049. 10.1021/pr200019m, PMID: PubMed DOI
Wiśniewski J. R., Zougman A., Nagaraj N., Mann M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362. 10.1038/nmeth.1322, PMID: PubMed DOI
Yeung Y. -G., Stanley E. R. (2010). Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr. Protoc. Protein Sci. 59, 16.12.1–16.12.5. 10.1002/0471140864.ps1612s59, PMID: PubMed DOI PMC
Zhang Z., Dubiak K. M., Huber P. W., Dovichi N. J. (2020). Miniaturized filter-aided sample preparation (MICRO-FASP) method for high throughput, ultrasensitive proteomics sample preparation reveals proteome asymmetry in Xenopus laevis embryos. Anal. Chem. 92, 5554–5560. 10.1021/acs.analchem.0c00470, PMID: PubMed DOI PMC
Zougman A., Selby P. J., Banks R. E. (2014). Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis. Proteomics 14, 1006–1000. 10.1002/pmic.201300553, PMID: PubMed DOI