• This record comes from PubMed

An Optimum Fatigue Design of Polymer Composite Compressed Natural Gas Tank Using Hybrid Finite Element-Response Surface Methods

. 2021 Feb 03 ; 13 (4) : . [epub] 20210203

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The main purpose of this research is to design a high-fatigue performance hoop wrapped compressed natural gas (CNG) composite cylinder. To this end, an optimization algorithm was presented as a combination of finite element simulation (FES) and response surface analysis (RSA). The geometrical model was prepared as a variable wall-thickness following the experimental measurements. Next, transient dynamic analysis was performed subjected to the refueling process, including the minimum and maximum internal pressures of 20 and 200 bar, respectively. The time histories of stress tensor components were extracted in the critical region. Furthermore, RSA was utilized to investigate the interaction effects of various polymer composite shell manufacturing process parameters (thickness and fiber angle) on the fatigue life of polymer composite CNG pressure tank (type-4). In the optimization procedure, four parameters including wall-thickness of the composite shell in three different sections of the CNG tank and fiber angle were considered as input variables. In addition, the maximum principal stress of the component was considered as the objective function. Eventually, the fatigue life of the polymer composite tank was calculated using stress-based failure criterion. The results indicated that the proposed new design (applying optimal parameters) leads to improve the fatigue life of the polymer composite tank with polyethylene liner about 2.4 times in comparison with the initial design.

See more in PubMed

Sawant T., Purwant N.K., Kulkarni S., Karajagi P. Design & Stress Analysis of a Hoop Wrapped CNG Composite Vessel with an SAE-4135 Low Alloy Steel Liner. Int. J. Eng. Res. 2016:338–343.

Heaidari-Rarani M., Ahmadi Jebeli M. Finite element modeling of failure in IV type composite pressure vessel using WCM plug-in in ABAQUS software. Modares Mech. Eng. 2018;18:191–200.

Agrawal A., Kumar S. Fatigue life prediction of a Hoop-Wrapped composite CNG cylinder containing surface flow. Int. J. Emerg. Technol. Adv. Eng. 2014;4:790–796.

Kim E.S., Choi S.K. Risk analysis of CNG composite pressure vessel via computer-aided method and fractography. Eng. Fail. Anal. 2013;27:84–98. doi: 10.1016/j.engfailanal.2012.06.006. DOI

Nouri M., Ashenai-Ghasemi F., Rahimi-Sherbaf G., Kashyzadeh K.R. Experimental and Numerical Study of the Static Performance of a Hoop-Wrapped CNG Composite Cylinder Considering Its Variable Wall Thickness and Polymer Liner. Mech. Compos. Mater. 2020;56:339–352. doi: 10.1007/s11029-020-09885-3. DOI

Seyedi S.M., Naddaf Oskouei A., Sayah Badkhor M. Experimental, numerical and Optimization study of Composite Tanks with Non-Metallic Primer (CNG Fourth Type) Modares Mech. Eng. 2020;20:1789–1800.

Reynaldo A., Pramono H.S., Santosa S.P., Aziz M. Finite Element Analysis of Liquefied Ammonia Tank for Mobility Vehicles Employing Polymers and Composites. Energies. 2020;13:5312. doi: 10.3390/en13205312. DOI

Sapre S., Pareek K., Vyas M. Investigation of structural stability of type IV compressed hydrogen storage tank during refueling of fuel cell vehicle. Energy Storage. 2020;2:150. doi: 10.1002/est2.150. DOI

Ayakdaş O., Aydın L., Savran M., Küçükdoğan N., Öztürk S. Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. Res. Eng. Struct. Mat. 2019;5:189–201.

Altuwair I.A., Khan F. Safety analysis of instantaneous release of compressed natural gas from a cylinder. J. Loss Prev Process Ind. 2020;68:104284. doi: 10.1016/j.jlp.2020.104284. DOI

Tschirschwitz R., Krentel D., Kluge M., Askar E., Habib K., Kohlhoff H., Krüger S., Neumann P.P., Rudolph M., Schoppa A., et al. Hazards from failure of CNG automotive cylinders in fire. J. Hazard. Mater. 2019;367:1–7. doi: 10.1016/j.jhazmat.2018.12.026. PubMed DOI

Chamberlain S., Modarres M. Compressed natural gas bus safety: A quantitative risk assessment. Risk Anal. 2005;25:377–387. doi: 10.1111/j.1539-6924.2005.00596.x. PubMed DOI

Yersak T.A., Elhamid M.H.A., Dailly A., Rogers M., Jason P., Cai M. Dynamics of a type IV comfortable pressure vessel for natural gas passenger vehicles. Int. J. Press. Vessel. Pip. 2019;175:103923. doi: 10.1016/j.ijpvp.2019.103923. DOI

Dicken C.J.B., Merida W. Measured effects of filling time and initial mass on the temperature distribution within a hydrogen cylinder during refueling. J. Power Sources. 2007;165:324–336. doi: 10.1016/j.jpowsour.2006.11.077. DOI

Galassi M.C., Papanikolaou E., Heitsch M., Baraldi D., Iborra B.A., Moretto P. Assessment of CFD models for hydrogen fast filling simulations. Int. J. Hydrog. Energy. 2014;39:6252–6260. doi: 10.1016/j.ijhydene.2013.03.164. DOI

Li Q., Zhou J., Chang Q., Xing W. Effects of geometry and inconstant mass flow rate on temperature within a pressurized hydrogen cylinder during refueling. Int. J. Hydrog. Energy. 2012;37:6043–6052. doi: 10.1016/j.ijhydene.2011.12.020. DOI

Liu Y.L., Zhao Y.Z., Zhao L., Li X., Chen H.G., Zhang L.F., Zhao H., Sheng R.H., Xie T., Hu D.H., et al. Experimental studies on temperature rise within a hydrogen cylinder during refueling. Int. J. Hydrog. Energy. 2010;35:2627–2632. doi: 10.1016/j.ijhydene.2009.04.042. DOI

Deymi-Dashtebayaz M., Farzaneh-Gord M., Nooralipoor N., Rastgar S. The full simulation of rapid refueling of a natural gas vehicle on-board cylinder. J. Nat. Gas. Sci. Eng. 2014;21:1099–1106. doi: 10.1016/j.jngse.2014.11.001. DOI

Reza Kashyzadeh K., Kivi S.A., Rynkovskaya M. Fatigue life assessment of unidirectional fibrous composite centrifugal compressor impeller blades based on FEM. Int. J. Emerg. Technol. Adv. Eng. 2017;7:6–11.

Farrahi G.H., Reza Kashyzadeh K., Minaei M., Sharifpour A., Riazi S. Analysis of Resistance Spot Welding Process Parameters Effect on the Weld Quality of Three-steel Sheets Used in Automotive Industry: Experimental and Finite Element Simulation. Int. J. Eng. Trans. A Basics. 2020;33:148–157.

Reza Kashyzadeh K., Ghorbani S., Forouzanmehr M. Effects of Drying Temperature and Aggregate Shape on the Concrete Compressive Strength: Experiments and Data Mining Techniques. Int. J. Eng. 2020;33:1780–1791.

Ghorbani S., Ghorbani S., Reza Kashyzadeh K. Taguchi Approach and Response Surface Analysis for Design of a High-performance Single-walled Carbon Nanotube Bundle Interconnects in a Full Adder. Int. J. Eng. 2020;33:1598–1607.

Omidi Bidgoli M., Reza Kashyzadeh K., Rahimian Koloor S.S., Petru M. Estimation of Critical Dimensions for the Crack and Pitting Corrosion Defects in the Oil Storage Tank Using Finite Element Method and Taguchi Approach. Metals. 2020;10:1372. doi: 10.3390/met10101372. DOI

Reza Kashyzadeh K., Farrahi G.H., Shariyat M., Ahmadian M.T. Experimental and finite element studies on free vibration of automotive steering knuckle. Int. J. Eng. 2017;30:1776–1783.

Vlase S., Purcarea R., Teodorescu-Draghicescu H., Calin R., Szava I., Mihalcica M. Behavior of a new Heliopol/Stratimat300 composite laminate. J. Optoelectron. Adv. Mater. 2013;78:569–572.

Reza Kashyzadeh K. A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: The case of the steering knuckle. Int. J. Eng. Sci. Technol. 2020;23:392–404. doi: 10.1016/j.jestch.2019.05.011. DOI

Reza Kashyzadeh K., Farrahi G.H., Shariyat M., Ahmadian M.T. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components. Eng. Fail. Anal. 2018;90:534–553. doi: 10.1016/j.engfailanal.2018.03.033. DOI

Reza Kashyzadeh K. Effects of Axial and Multiaxial Variable Amplitude Loading Conditions on the Fatigue Life Assessment of Automotive Steering Knuckle. J. Fail. Anal. Preven. 2020;20:455–463. doi: 10.1007/s11668-020-00841-w. DOI

Maleki E., Unal O., Reza Kashyzadeh K. Efficiency analysis of shot peening parameters on variations of hardness, grain size and residual stress via Taguchi approach. Met. Mater. Int. 2019;25:1436–1447. doi: 10.1007/s12540-019-00290-7. DOI

Fawaz Z., Ellyin F. Fatigue failure model for fiber-reinforced materials under general loading condition. J. Compos. Mater. 1994;28:1432–1451. doi: 10.1177/002199839402801503. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Crashworthiness Assessment of Carbon/Glass Epoxy Hybrid Composite Tubes Subjected to Axial Loads

. 2022 Sep 29 ; 14 (19) : . [epub] 20220929

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...