An Extended Thickness-Dependent Moisture Absorption Model for Unidirectional Carbon/Epoxy Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
09G16
Universiti Teknologi Malaysia
01M01
Universiti Teknologi Malaysia
FRGS/1/2019/TK03/UKM/02/1
Universiti Kebangsaan Malaysia
FRGS/1/2019/TK03/UKM/01/3
Universiti Kebangsaan Malaysia
Marie Sklodowska-Curie grant agreement (No 730888)
European Union's Horizon 2020 research and innovation program
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth, and Sports of the Czech Republic and the European Union (European Structural and Investment Funds Operational Program Research, Development, and Education)
internal grants
Institute for Nanomaterials, Advanced Technologies and Innovations (CXI), Technical University of Liberec (TUL)
PubMed
33573112
PubMed Central
PMC7866558
DOI
10.3390/polym13030440
PII: polym13030440
Knihovny.cz E-zdroje
- Klíčová slova
- Weibull, carbon/epoxy composite, moisture absorption, non-Fickian, thickness-dependent,
- Publikační typ
- časopisecké články MeSH
Moisture absorption tests for materials that exhibit non-Fickian behavior generally require a relatively long period to reach saturation. Therefore, it would be beneficial to establish a relationship between the moisture content and the thickness to minimize the experimental time and cost. This research characterizes the moisture absorption behavior of AS4/8552 carbon/epoxy composites. Specimens were prepared at 4, 8, and 16 plies and immersed in distilled water at 60 °C. The relationship between the non-Fickian parameters (Fickian to non-Fickian maximum moisture content ratio ϕ, non-Fickian diffusivity per square thickness α, and non-Fickian initiation time to) and thickness was characterized using a thickness-dependent model. A comparison with other materials revealed that all three non-Fickian parameters are able to be fitted using a power law. Nevertheless, the upper boundary for the applicability of this model was not determined in this study. The Weibull distribution plots indicate that the probability of non-Fickian moisture absorption is influenced by ϕ and α at approximately 62% within a normalized thickness range of 2-3. In regards to to, it is 82% at a normalized thickness of 6. Therefore, the Weibull distribution is proposed for the assessment of non-Fickian moisture absorption based on the material's thickness.
Zobrazit více v PubMed
Guermazi N., Ben Tarjem A., Ksouri I., Ayedi H.F. On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos. Part B Eng. 2016;85:294–304. doi: 10.1016/j.compositesb.2015.09.035. DOI
Middendorf P., Metzner C. Aerospace applications of non-crimp fabric composites. In: Lomov S.V., editor. Non-Crimp Fabric Composites. Woodhead Publishing; Cambridge, UK: 2011. pp. 441–449e.
Mad Asasaari S.F., Wong K.J., Tamin M.N., Johar M. Moisture absorption effects on the mechanical properties of carbon/epoxy composites. Int. J. Struct. Integr. 2020;11:605–614. doi: 10.1108/IJSI-12-2019-0136. DOI
Wong K.J., Gong X.J., Aivazzadeh S., Tamin M.N. Moisture effects on patch bonded composite repairs. Key Eng. Mater. 2016;709:3–6. doi: 10.4028/www.scientific.net/KEM.709.3. DOI
Wong K.J., Israr H.A., Tamin M.N. Characterisation of moisture absorption effects on the strength of composite materials. Adv. Mater. Res. 2015;1125:69–73. doi: 10.4028/www.scientific.net/AMR.1125.69. DOI
Barbosa A.P.C., Fulco A.P.P., Guerra E.S., Arakaki F.K., Tosatto M., Costa M.C.B., Melo J.D.D. Accelerated aging effects on carbon fiber/epoxy composites. Compos. Part B Eng. 2017;110:298–306. doi: 10.1016/j.compositesb.2016.11.004. DOI
Meng M., Rizvi M.J., Grove S.M., Le H.R. Effects of hygrothermal stress on the failure of CFRP composites. Compos. Struct. 2015;133:1024–1035. doi: 10.1016/j.compstruct.2015.08.016. DOI
Johar M., Chong W.W.F., Kang H.S., Wong K.J. Effects of moisture absorption on the different modes of carbon/epoxy composites delamination. Polym. Degrad. Stab. 2019;165:117–125. doi: 10.1016/j.polymdegradstab.2019.05.007. DOI
Davidson B.D., Kumar M., Soffa M.A. Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite. Compos. Part A Appl. Sci. Manuf. 2009;40:67–79. doi: 10.1016/j.compositesa.2008.10.006. DOI
LeBlanc L.R., LaPlante G. Experimental investigation and finite element modeling of mixed-mode delamination in a moisture-exposed carbon/epoxy composite. Compos. Part A Appl. Sci. Manuf. 2016;81:202–213. doi: 10.1016/j.compositesa.2015.11.017. DOI
Zhao Y., Liu W., Seah L.K., Chai G.B. Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment. Compos. Part B Eng. 2016;106:332–343. doi: 10.1016/j.compositesb.2016.09.045. DOI
Bao L.-R., Yee A.F., Lee C.Y.C. Moisture absorption and hygrothermal aging in a bismaleimide resin. Polymer. 2001;42:7327–7333. doi: 10.1016/S0032-3861(01)00238-5. DOI
Bao L.-R., Yee A.F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites. Part I: Uni-weave composites. Compos. Sci. Technol. 2002;62:2099–2110. doi: 10.1016/S0266-3538(02)00161-6. DOI
Bao L.-R., Yee A.F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites. Part II: Woven and hybrid composites. Compos. Sci. Technol. 2002;62:2111–2119. doi: 10.1016/S0266-3538(02)00162-8. DOI
Karbhari V.M., Xian G. Hygrothermal effects on high Vf pultruded unidirectional carbon/epoxy composites: Moisture uptake. Compos. Part B Eng. 2009;40:41–49. doi: 10.1016/j.compositesb.2008.07.003. DOI
Manfredi L.B., Santis H.D., Vázquez A. Influence of the addition of montmorillonite to the matrix of unidirectional glass fibre/epoxy composites on their mechanical and water absorption properties. Compos. Part A Appl. Sci. Manuf. 2008;39:1726–1731. doi: 10.1016/j.compositesa.2008.07.016. DOI
Wang Y., Zhu W., Wan B., Meng Z., Han B. Hygrothermal ageing behavior and mechanism of carbon nanofibers modified flax fiber-reinforced epoxy laminates. Compos. Part A Appl. Sci. Manuf. 2021;140:106142. doi: 10.1016/j.compositesa.2020.106142. DOI
Berens A.R., Hopfenberg H.B. Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer. 1978;19:489–496. doi: 10.1016/0032-3861(78)90269-0. DOI
Yian Z., Zhiying W., Keey S.L., Boay C.G. Long-term viscoelastic response of E-glass/bismaleimide composite in seawater environment. Appl. Compos. Mater. 2015;22:693–709. doi: 10.1007/s10443-014-9431-2. DOI
Carter H.G., Kibler K.G. Langmuir-type model for anomalous moisture diffusion in composite resins. J. Compos. Mater. 1978;12:118–131. doi: 10.1177/002199837801200201. DOI
LaPlante G., Ouriadov A.V., Lee-Sullivan P., Balcom B.J. Anomalous moisture diffusion in an epoxy adhesive detected by magnetic resonance imaging. J. Appl. Polym. Sci. 2008;109:1350–1359. doi: 10.1002/app.28106. DOI
Ameli A., Dalta N.V., Papini M., Spelt J.K. Hygrothermal properties of highly toughened epoxy adhesives. J. Adhes. 2010;86:698–725. doi: 10.1080/00218464.2010.482405. DOI
Lee M.H., Peppas N.A. Water transport in graphite/epoxy composites. J. Appl. Polym. Sci. 1993;47:1349–1359. doi: 10.1002/app.1993.070470805. DOI
Popineau S., Rondeau-Mouro C., Sulpice-Gaillet C., Shanahan M.E.R. Free/bound water absorption in an epoxy adhesive. Polymer. 2005;46:10733–10740. doi: 10.1016/j.polymer.2005.09.008. DOI
La Saponara V. Environmental and chemical degradation of carbon/epoxy and structural adhesive for adhesive for aerospace applications: Fickian and anomalous diffusion, Arrhenius kinetics. Compos. Struct. 2011;93:2180–2195. doi: 10.1016/j.compstruct.2011.03.005. DOI
Barink M., Mavinkurve A., Janssen J. Predicting non-Fickian moisture diffusion in EMCs for application in micro-electronic devices. Microelectron. Reliab. 2016;62:45–49. doi: 10.1016/j.microrel.2016.03.016. DOI
Loh W.K., Crocombe A.D., Abdel Wahab M.M., Ashcroft I.A. Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive. Int. J. Adhes. Adhes. 2005;25:1–12. doi: 10.1016/j.ijadhadh.2004.02.002. DOI
Placette M.D., Fan X., Zhao J.-H., Edwards D. Dual stage modeling of moisture absorption and desorption in epoxy mold compounds. Microelectron. Reliab. 2012;52:1401–1408. doi: 10.1016/j.microrel.2012.03.008. DOI
Shirangi M.H., Auerspeg J., Koyuncu M., Walter H., Müller W.H., Michel B. Characterization of dual-stage moisture diffusion, residual moisture content and hygroscopic swelling of epoxy molding compounds; Proceedings of the 9th EuroSime2008; Freibury, Germany. 20–23 April 2008.
Wong K.J., Low K.O., Israr H.A., Tamin M.N. Thickness-dependent non-Fickian moisture absorption in epoxy molding compounds. Microelectron. Reliab. 2016;65:160–166. doi: 10.1016/j.microrel.2016.08.014. DOI
Johar M., Kang H.S., Chong W.W.F., Wong K.J. A further generalized thickness-dependent non-Fickian moisture absorption model using plain woven epoxy composites. Polym. Test. 2018;69:522–527. doi: 10.1016/j.polymertesting.2018.06.013. DOI
Rajaram A.N., Gin Boay C., Srikanth N. Effect of curing on the hygrothermal behaviour of epoxy and its carbon composite material. Compos. Commun. 2020;22:100507. doi: 10.1016/j.coco.2020.100507. DOI
ASTM International . ASTM D5229. Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2010.