Moisture Absorption Effects on Mode II Delamination of Carbon/Epoxy Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
09G16
Universiti Teknologi Malaysia
01M01
Universiti Teknologi Malaysia
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth, and Sports of the Czech Republic and the European Union (European Structural and Investment Funds Operational Program Research, Development, and Education)
PubMed
32971855
PubMed Central
PMC7569855
DOI
10.3390/polym12092162
PII: polym12092162
Knihovny.cz E-zdroje
- Klíčová slova
- Fickian, carbon/epoxy composite, cohesive zone modeling, delamination, fracture toughness, moisture absorption,
- Publikační typ
- časopisecké články MeSH
It is necessary to consider the influence of moisture damage on the interlaminar fracture toughness for composite structures that are used for outdoor applications. However, the studies on the progressive variation of the fracture toughness as a function of moisture content M (%) is rather limited. In this regard, this study focuses on the characterization of mode II delamination of carbon/epoxy composites conditioned at 70 °C/85% relative humidity (RH). End-notched flexure test is conducted for specimens aged at various moisture absorption levels. Experimental results reveal that mode II fracture toughness degrades with the moisture content, with a maximum of 23% decrement. A residual property model is used to predict the variation of the fracture toughness with the moisture content. Through numerical simulations, it is found that the approaches used to estimate the lamina and cohesive properties are suitable to obtain reliable simulation results. In addition, the damage initiation is noticed during the early loading stage; however, the complete damage is only observed when the numerical peak load is achieved. Results from the present research could serve as guidelines to predict the residual properties and simulate the mode II delamination behavior under moisture attack.
Zobrazit více v PubMed
Guermazi N., Ben Tarjem A., Ksouri I., Ayedi H.F. On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos. Part B-Eng. 2016;85:294–304. doi: 10.1016/j.compositesb.2015.09.035. DOI
Middendorf P., Metzner C. 18—Aerospace applications of non-crimp fabric composites. In: Lomov S.V., editor. Non-Crimp Fabric Composites. Woodhead Publishing; Cambridge, UK: 2011. pp. 441–449.
Wong K.J., Israr H.A., Tamin M.N. Characterisation of moisture absorption effects on the strength of composite materials. Adv. Mater. Res. 2015;1125:69–73. doi: 10.4028/www.scientific.net/AMR.1125.69. DOI
Cysne Barbosa A.P., Fulco A.P.P., Guerra E.S.S., Arakaki F.K., Tosatto M., Costa M.C.B., Melo J.D.D. Accelerated aging effects on carbon fiber/epoxy composites. Compos. Part B-Eng. 2017;110:298–306. doi: 10.1016/j.compositesb.2016.11.004. DOI
Meng M., Rizvi M.J., Grove S.M., Le H.R. Effects of hygrothermal stress on the failure of CFRP composites. Compos. Struct. 2015;133:1024–1035. doi: 10.1016/j.compstruct.2015.08.016. DOI
Mad Asasaari S.F., Wong K.J., Tamin M.N., Johar M. Moisture absorption effects on the mechanical properties of carbon/epoxy composites. Int. J. Struct. Integr. 2020;11:605–614. doi: 10.1108/IJSI-12-2019-0136. DOI
Nash N.H., Ray D., Young T.M., Stanley W.F. The influence of hydrothermal conditioning on the Mode-I, thermal and flexural properties of Carbon/Benzoxazine composites with a thermoplastic toughening interlayer. Compos. Part A. 2015;76:135–144. doi: 10.1016/j.compositesa.2015.04.023. DOI
LeBlanc L.R., LaPlante G. Experimental investigation and finite element modeling of mixed-mode delamination in a moisture-exposed carbon/epoxy composite. Compos. Part A. 2016;81:202–213. doi: 10.1016/j.compositesa.2015.11.017. DOI
Davidson B.D., Kumar M., Soffa M.A. Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite. Compos. Part A. 2009;40:67–79. doi: 10.1016/j.compositesa.2008.10.006. DOI
Gong X.J., Wong K.J., Tamin M.N. Moisture absorption effects on interlaminar fracture toughness of woven glass/epoxy composite laminates. In: Tamin M.N., editor. Damage and Fracture of Composite Materials and Structures, Advanced Structured Materials. Springer; Berlin/Heidelberg, Germany: 2012. pp. 107–129.
Zhao Y., Liu W., Seah L.K., Chai G.B. Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment. Compos. Part B-Eng. 2016;106:332–343. doi: 10.1016/j.compositesb.2016.09.045. DOI
Nash N.H., Young T.M., Stanley W.F. The influence of a thermoplastic toughening interlayer and hydrothermal conditioning on the Mode-II interlaminar fracture toughness of Carbon/Benzoxazine composites. Compos. Part A. 2016;81:111–120. doi: 10.1016/j.compositesa.2015.11.010. DOI
Johar M., Chong W.W.F., Kang H.S., Wong K.J. Effects of moisture absorption on the different modes of carbon/epoxy composites delamination. Polym. Degrad. Stab. 2019;165:117–125. doi: 10.1016/j.polymdegradstab.2019.05.007. DOI
ASTM D5229 . Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2010.
Low K.O., Teng S.M., Johar M., Israr H.A., Wong K.J. Mode I delamination behaviour of carbon/epoxy composite at different displacement rates. Compos. Part B-Eng. 2019;176:107293. doi: 10.1016/j.compositesb.2019.107293. DOI
ASTM D7905 . Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International; West Conshohocken, PA, USA: 2014.
Irwin G.R., Kies J.A. Critical energy rate analysis of fracture strength. Weld. J. Res. Suppl. 1954;33:193–198.
Fick A. Über diffusion. Poggendorff’s Annalen der Physik und Chemie 1855; Volume 94, pp. 59–86. [(accessed on 21 September 2020)]; Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.18551700105. DOI
Wang Z., Zhao X.-L., Xian G., Wu G., Singh Raman R.K., Al-Saadi S., Haque A. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Constr. Build. Mater. 2017;139:467–489. doi: 10.1016/j.conbuildmat.2017.02.038. DOI
Wang Z., Zhao X.-L., Xian G., Wu G., Singh Raman R.K., Al-Saadi S. Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment. Constr. Build. Mater. 2017;156:985–1004. doi: 10.1016/j.conbuildmat.2017.09.045. DOI
Wang Z., Xian G., Zhao X.-L. Effects of hydrothermal aging on carbon fibre/epoxy composites with different interfacial bonding strength. Constr. Build. Mater. 2018;161:634–648. doi: 10.1016/j.conbuildmat.2017.11.171. DOI
Zhong Y., Joshi S.C. Impact behavior and damage characteristics of hygrothermally conditioned carbon epoxy composite laminates. Mater. Des. 2015;65:254–264. doi: 10.1016/j.matdes.2014.09.030. DOI
Mollón V., Bonhomme J., Elmarakbi A.M., Argüelles A., Viña J. Finite element modelling of mode I delamination specimens by means of implicit and explicit solvers. Polym. Test. 2012;31:404–410. doi: 10.1016/j.polymertesting.2011.12.008. DOI
Turon A., Dávila C.G., Camanho P.P., Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007;74:1665–1682. doi: 10.1016/j.engfracmech.2006.08.025. DOI
Camanho P.P., Davila C.G., de Moura M.F.S.F. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 2003;37:1415–1438. doi: 10.1177/0021998303034505. DOI
Fan C., Jar P.Y.B., Cheng J.J.R. Cohesive zone with continuum damage properties for simulation of delamination development in fibre composites and failure of adhesive joints. Eng. Fract. Mech. 2008;75:3866–3880. doi: 10.1016/j.engfracmech.2008.02.010. DOI
Zhao L., Gong Y., Zhang J., Chen Y., Fei B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Compos. Struct. 2014;116:509–522. doi: 10.1016/j.compstruct.2014.05.042. DOI
Turon A., Camanho P.P., Costa J., Renart J. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Compos. Struct. 2010;92:1857–1864. doi: 10.1016/j.compstruct.2010.01.012. DOI