Thermal Delamination Modelling and Evaluation of Aluminium-Glass Fibre-Reinforced Polymer Hybrid
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
R.J130000.7824.4F248
Ministry of Higher Education, Malaysia
Q.J130000.2551.20H67
Universiti Teknologi Malaysia
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth, and Sports of the Czech Republic and the European Union
PubMed
33557350
PubMed Central
PMC7914749
DOI
10.3390/polym13040492
PII: polym13040492
Knihovny.cz E-resources
- Keywords
- Mode-I delamination, Mode-II delamination, cohesive zone modelling, finite element analysis, metal–composite hybrid laminate, temperature effect,
- Publication type
- Journal Article MeSH
This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal-composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium-glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen's edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.
See more in PubMed
Muthukumar C., Ishak M., Jawaid M., Leman Z., Sapuan S. An experimental review on the mechanical properties and hygrothermal behaviour of fibre metal laminates. J. Reinf. Plast. Compos. 2016;36 doi: 10.1177/0731684416668260. DOI
Sadighi M., Alderliesten R.C., Benedictus R. Impact resistance of fiber-metal laminates: A review. Int. J. Impact Eng. 2012;49:77–90. doi: 10.1016/j.ijimpeng.2012.05.006. DOI
Chai G.B., Manikandan P. Low velocity impact response of fibre-metal laminates – A review. Compos. Struct. 2014;107:363–381. doi: 10.1016/j.compstruct.2013.08.003. DOI
Roebroeks G.H.J.J. Fibre-metal laminates: Recent developments and applications. Int. J. Fatigue. 1994;16:33–42. doi: 10.1016/0142-1123(94)90443-X. DOI
Vlot A., Van Ingen J.W. Delamination Resistance of Post-Stretched Fibre Metal Laminates. J. Compos. Mater. 1998;32:1784–1805. doi: 10.1177/002199839803201903. DOI
Banea M.D., Rosioara M., Carbas R.J.C., da Silva L.F.M. Multi-material adhesive joints for automotive industry. Compos. Part B Eng. 2018;151:71–77. doi: 10.1016/j.compositesb.2018.06.009. DOI
Turon A., Dávila C.G., Camanho P.P., Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007;74:1665–1682. doi: 10.1016/j.engfracmech.2006.08.025. DOI
Turon A., Camanho P.P., Costa J., Renart J. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Compos. Struct. 2010;92:1857–1864. doi: 10.1016/j.compstruct.2010.01.012. DOI
LeBlanc L.R., LaPlante G. Experimental investigation and finite element modeling of mixed-mode delamination in a moisture-exposed carbon/epoxy composite. Compos. Part A Appl. Sci. Manufact. 2016;81:202–213. doi: 10.1016/j.compositesa.2015.11.017. DOI
Johar M., Israr H.A., Low K.O., Wong K.J. Numerical simulation methodology for mode II delamination of quasi-isotropic quasi-homogeneous composite laminates. J. Compos. Mater. 2017;51:3955–3968. doi: 10.1177/0021998317695414. DOI
Koloor S.S.R., Tamin M.N. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI
Li H., Xu Y., Hua X., Liu C., Tao J. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences. Compos. Struct. 2018;187:354–363. doi: 10.1016/j.compstruct.2017.12.068. DOI
Manikandan P., Chai G.B. Mode-I Metal-Composite Interface Fracture Testing for Fibre Metal Laminates. Adv. Mater. Sci. Eng. 2018;2018:11. doi: 10.1155/2018/4572989. DOI
Zhao L., Gong Y., Zhang J., Chen Y., Fei B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Compos. Struct. 2014;116:509–522. doi: 10.1016/j.compstruct.2014.05.042. DOI
Delbariani-Nejad A., Malakouti M., Farrokhabadi A. Reliability analysis of metal-composite adhesive joints under debonding modes I, II, and I/II using the results of experimental and FEM analyses. Fatigue Fract. Eng. Mater. Struct. 2019;42:2644–2662. doi: 10.1111/ffe.13078. DOI
Tsokanas P., Loutas T. Hygrothermal effect on the strain energy release rates and mode mixity of asymmetric delaminations in generally layered beams. Eng. Fract. Mech. 2019;214:390–409. doi: 10.1016/j.engfracmech.2019.03.006. DOI
Ramírez F.M.G., Garpelli F.P., Sales R.d.C.M., Cândido G.M., Arbelo M.A., Shiino M.Y., Donadon M.V. Hygrothermal effects on the fatigue delamination growth onset in interlayer toughened CFRP joints. Int. J. Fatigue. 2020;138:105729. doi: 10.1016/j.ijfatigue.2020.105729. DOI
Tsokanas P., Loutas T., Kotsinis G., Kostopoulos V., van den Brink W.M., Martin de la Escalera F. On the fracture toughness of metal-composite adhesive joints with bending-extension coupling and residual thermal stresses effect. Compos. Part B Eng. 2020;185:107694. doi: 10.1016/j.compositesb.2019.107694. DOI
Cadieu L., Kopp J.B., Jumel J., Bega J., Froustey C. A fracture behaviour evaluation of Glass/Elium150 thermoplastic laminate with the DCB test: Influence of loading rate and temperature. Compos. Struct. 2021;255:112907. doi: 10.1016/j.compstruct.2020.112907. DOI
Davidson B.D., Kumar M., Soffa M.A. Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite. Compos. Part A Appl. Sci. Manufact. 2009;40:67–79. doi: 10.1016/j.compositesa.2008.10.006. DOI
Ibrahim G.R., Albarbar A. A new approach to the cohesive zone model that includes thermal effects. Compos. Part B Eng. 2019;167:370–376. doi: 10.1016/j.compositesb.2019.03.003. DOI
Günther N., Griese M., Stammen E., Dilger K. Modeling of adhesive layers with temperature-dependent cohesive zone elements for predicting adhesive failure during the drying process of cathodic dip painting. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 2019;233:485–494. doi: 10.1177/1464420718806005. DOI
Qin G., Na J., Tan W., Mu W., Ji J. Failure prediction of adhesively bonded CFRP-Aluminum alloy joints using cohesive zone model with consideration of temperature effect. J. Adhes. 2019;95:723–746. doi: 10.1080/00218464.2018.1440212. DOI
Johnson G.R., Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985;21:31–48. doi: 10.1016/0013-7944(85)90052-9. DOI
Chang F.-K., Chang K.-Y. A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 1987;21:834–855. doi: 10.1177/002199838702100904. DOI
Gerlach S., Fiolka M., Matzenmiller A. Modelling and analysis of adhesively bonded joints with interface elements for crash analysis. Konf. Zum. 2005;4:35–44.
Chow Z.P., Ahmad Z., Wong K.J. Experimental study of temperature effect on the mechanical properties of GFRP and FML interface. In: Öchsner A., Altenbach H., editors. Engineering Design Applications II: Structures, Materials and Processes. Springer International Publishing; Cham, Switzerland: 2020.
Chow Z.P., Ahmad Z., Wong K.J., Israr H.A. Thermo-mechanical characterisation and modelling of GFRP laminated aluminium. Compos. Part B Eng. 2019;173:106971. doi: 10.1016/j.compositesb.2019.106971. DOI
Wen Q., Li W., Wang W.B., Wang F., Gao Y.J., Patel V. Experimental and numerical investigations of bonding interface behavior in stationary shoulder friction stir lap welding. J. Mater. Sci. Technol. 2018;35 doi: 10.1016/j.jmst.2018.09.028. DOI
Lesuer D. Experimental Investigations of Material Models for TI-6A1-4V Titanium and 2024-T3 Aluminum. Lawrence Livermore National Lab.; Livermore, CA, USA: 2000.
Li L., Sun L., Wang T., Kang N., Cao W. Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates. Aerosp. Sci. Technol. 2019;84:995–1010. doi: 10.1016/j.ast.2018.11.038. DOI
Wong K.J., Johar M., Rahimian Koloor S.S., Petru M., Tamin M. Moisture absorption effects on mode II delamination of carbon/epoxy composites. Polymers. 2020;12:2162. doi: 10.3390/polym12092162. PubMed DOI PMC
Pan Y., Wu G., Cheng X., Zhang Z., Li M., Ji S., Huang Z. Mode I and Mode II interlaminar fracture toughness of CFRP/magnesium alloys hybrid laminates. Compos. Interf. 2016;23:453–465. doi: 10.1080/09276440.2016.1144911. DOI