Can Inhibitors of Snake Venom Phospholipases A₂ Lead to New Insights into Anti-Inflammatory Therapy in Humans? A Theoretical Study

. 2017 Oct 25 ; 9 (11) : . [epub] 20171025

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29068410

Human phospholipase A₂ (hPLA₂) of the IIA group (HGIIA) catalyzes the hydrolysis of membrane phospholipids, producing arachidonic acid and originating potent inflammatory mediators. Therefore, molecules that can inhibit this enzyme are a source of potential anti-inflammatory drugs, with different action mechanisms of known anti-inflammatory agents. For the study and development of new anti-inflammatory drugs with this action mechanism, snake venom PLA₂ (svPLA₂) can be employed, since the svPLA₂ has high similarity with the human PLA₂ HGIIA. Despite the high similarity between these secretory PLA₂s, it is still not clear if these toxins can really be employed as an experimental model to predict the interactions that occur with the human PLA₂ HGIIA and its inhibitors. Thus, the present study aims to compare and evaluate, by means of theoretical calculations, docking and molecular dynamics simulations, as well as experimental studies, the interactions of human PLA₂ HGIIA and two svPLA₂s,Bothrops toxin II and Crotoxin B (BthTX-II and CB, respectively). Our theoretical findings corroborate experimental data and point out that the human PLA₂ HGIIA and svPLA₂ BthTX-II lead to similar interactions with the studied compounds. From our results, the svPLA₂ BthTX-II can be used as an experimental model for the development of anti-inflammatory drugs for therapy in humans.

Zobrazit více v PubMed

Joshi V. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase. Arch. Biochem. Biophys. 2016;598:28–39. doi: 10.1016/j.abb.2016.04.003. PubMed DOI

Silva P. Farmacologia. 8th ed. Guanabara Koogan; Rio de Janeiro, Brazil: 2010. 1024p

Muri E.M., Sposito M.M.M., Metsavaht L. Nonsteroidal antiinflammatory drugs and their local pharmacology. Acta Fisiatr. 2009;16:186–190.

Anelli M.G., Scioscia C., Grattagliano I., Lapadula G. Old and new antirheumatic drugs and the risk of hepatotoxicity. Ther. Drug Monit. 2012;34:622–628. doi: 10.1097/FTD.0b013e31826a6306. PubMed DOI

Rafaniello C., Ferrajolo C., Sullo M.G., Sessa M., Sportiello L., Balzano A., Manguso F., Aiezza M.L., Rossi F., Scarpignato C., et al. Risk of gastrointestinal complications associated to NSAIDs, low-dose aspirin and their combinations: Results of a pharmacovigilance reporting system. Pharm. Res. 2016;104:108–114. doi: 10.1016/j.phrs.2015.12.026. PubMed DOI

Yousefpour A., Iranagh S.A., Nademi Y., Modarress H. Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane. Int. J. Quant. Chem. 2013;113:1919–1930. doi: 10.1002/qua.24415. DOI

Cronstein B.N., Weissmann G. Targets for antiinflammatory drugs. Ann. Rev. Pharmacol. Toxicol. 1995;35:449–462. doi: 10.1146/annurev.pa.35.040195.002313. PubMed DOI

Gaddipati R.S., Raikundalia G.K., Mathai M.L. Dual and selective lipid inhibitors of cyclooxygenases and lipoxygenase: A molecular docking study. Med. Chem. Res. 2014;23:3389–3402. doi: 10.1007/s00044-014-0919-y. DOI

Peters-Golden M.D.M., Henderson M.D.W.R., Jr. Leukotrienes. N. Engl. J. Med. 2007;357:1841–1854. doi: 10.1056/NEJMra071371. PubMed DOI

Pyasi K., Tufvesson E., Moitra S. Evaluating the role of leukotriene-modifying drugs in asthma management: Are their benefits ‘losing in translation’? Pulm. Pharmacol. Ther. 2016;41:52–59. doi: 10.1016/j.pupt.2016.09.006. PubMed DOI

Quach N.D., Arnold R.D., Cummings B.S. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem. Pharmacol. 2014;90:338–348. doi: 10.1016/j.bcp.2014.05.022. PubMed DOI PMC

Tomankova V., Anzenbacher P., Anzenbacherova E. Effects of obesity on liver cytochromes P450 in various animal models. Biomed. Pap. Olomouc. 2017;161:144–151. doi: 10.5507/bp.2017.026. PubMed DOI

Lerch M.M., Adler G. Experimental animal-models of acute-pancreatitis. Int. J. Pancreatol. 1994;15:159–170. PubMed

Liu Y., Zeng B.H., Shang H.T., Cen Y.Y., Wei H. Bama Miniature Pigs (Sus scrofa domestica) as a Model for Drug Evaluation for Humans: Comparison of In Vitro Metabolism and In Vivo Pharmacokinetics of Lovastatin. Comp. Med. 2008;58:580–587. PubMed PMC

Prueksaritanont T. Use of In Vivo Animal Models to Assess Drug-Drug Interactions. Enzyme- and Transporter-Based Drug-Drug Interactions: Progress and Future Challenges. Pharm. Res. 2010;27:283–297. PubMed

Siltari A., Kivimäki A.S., Ehlers P.I., Korpela R., Vapaatalo H. Effects of Milk Casein Derived Tripeptides on Endothelial Enzymes In Vitro; a Study with Synthetic Tripeptides. Arzneimittelforschung. 2012;62:477–481. doi: 10.1055/s-0032-1321846. PubMed DOI

Marchi-Salvador D.P., Corrêa L.C., Magro A.J., Oliveira C.Z., Soares A.M., Fontes M.R. Insights into the role of oligomeric state on the biological activities of crotoxin: Crystal structure of a tetrameric phospholipase A2 formed by two isoforms of crotoxin B from Crotalus durissus terrificus venom. Proteins. 2008;72:883–891. doi: 10.1002/prot.21980. PubMed DOI

Dos Santos J.I., Cintra-Francischinelli M., Borges R.J., Fernandes C.A., Pizzo P., Cintra A.C., Braz A.S., Soares A.M., Fontes M.R. Structural, functional, and bioinformatics studies reveal a new snake venom homologue phospholipase A2 class. Proteins. 2011;79:61–78. doi: 10.1002/prot.22858. PubMed DOI

Teixeira C.F., Landucci E.C., Antunes E., Chacur M., Cury Y. Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon. 2003;42:947–962. doi: 10.1016/j.toxicon.2003.11.006. PubMed DOI

Marcussi S., Sant’Ana C.D., Oliveira C.Z., Rueda A.Q., Menaldo D.L., Beleboni R.O., Stabeli R.G., Giglio J.R., Fontes M.R., Soares A.M. Snake venom phospholipase A2 inhibitors: Medicinal chemistry and therapeutic potential. Curr. Top. Med. Chem. 2007;7:743–756. doi: 10.2174/156802607780487614. PubMed DOI

Kim R.R., Malde A.K., Nematollahi A., Scott K.F., Church W.B. Molecular dynamics simulations reveal structural insights into inhibitor binding modes and functionality in human Group IIA phospholipase A2. Proteins. 2017;85:827–842. doi: 10.1002/prot.25235. PubMed DOI

Batsanov S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001;37:1031–1046.

Da Cunha E.E., Barbosa E.F., Oliveira A.A., Ramalho T.C. Molecular modeling of Mycobacterium tuberculosis DNA gyrase and its molecular docking study with gatifloxacin inhibitors. J. Biomol. Struct. Dyn. 2010;27:619–625. doi: 10.1080/07391102.2010.10508576. PubMed DOI

Golçalves M.A., Santos L.S., Prata D.M., Fernando P.C., Cunha E.F.F., Ramalho T.C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Aplication to thermal and solvent effects of MRI probes. Theor. Chem. Acc. 2017;136:15. doi: 10.1007/s00214-016-2037-z. DOI

Dileep K.V., Remya C., Cerezo J., Fassihi A., Pérez-Sánchez H., Sadasivan C. Comparative studies on the inhibitory activities of selected benzoic acid derivatives against secretory phospholipase A2, a key enzyme involved in the inflammatory pathway. Mol. Biosyst. 2015;11:1973–1979. doi: 10.1039/C5MB00073D. PubMed DOI

Gutiérrez J.M., Avila C., Rojas E., Cerdas L. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon. 1998;26:411–413. doi: 10.1016/0041-0101(88)90010-4. PubMed DOI

Price M.F., Wilkinson I.D., Gentry L.O. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20:7–14. doi: 10.1080/00362178285380031. PubMed DOI

Huang X., Miller W., Huang X., Miller W. A time-efficient linear-space local similarity algorithm. Adv. Appl. Math. 1991;12:337–357. doi: 10.1016/0196-8858(91)90017-D. DOI

Consortium U. UniProt: A hub for protein information. Nucleic Acids Res. 2015;43:D204–D212. doi: 10.1093/nar/gku989. PubMed DOI PMC

Expasy. [(accessed on 23 October 2017)]; Available online: http://au.expasy.org/

UniProtKB Database. [(accessed on 23 October 2017)]; Available online: http://www.uniprot.org/

Hehre W.J., Deppmeier B.J., Klunzinger P.E. Pcspartanpro. Wavefunction, Inc.; Irvine, CA, USA: 1999.

Thomsen R., Christensen M.H. MolDock: A new technique for high-accuracy Molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Frisch M.J. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009.

Canzar S., El-Kebir M., Pool R., Elbassioni K., Mark A.E., Geerke D.P., Stougie L., Klau G.W. Charge group partitioning in biomolecular simulation. J. Comput. Biol. 2013;20:188–198. doi: 10.1089/cmb.2012.0239. PubMed DOI PMC

Automated Topology Builder (ATB) Server. [(accessed on 23 October 2017)]; Available online: http://compbio.biosci.uq.edu.au/atb/

Van Gunsteren W.F., Billeter S.R., Eising A.A., Hunenberger P.H., Krüger P., Mark A.E., Scott W.R.P., Tironi I.G. Biomolecular Simulation: The GROMOS96 Manual and User Guide. VDF Hochschulverlag AG an der ETH Zürich; Zurich, Switzerland: 1996.

Abraham M.J., Murtola T., Schulz R., Pall S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Caddigan E.J. VMD User’s Guide. University of Illinois; Beckman Institute; Urbana, IL, USA: 2004.

Edwards P.M. Origin 7.0: Scientific graphing and data analysis software. J. Chem. Inf. Comput. Sci. Wash. 2002;42:1270–1271. doi: 10.1021/ci0255432. DOI

Mancini D.T., Matos K.S., da Cunha E.F., Assis T.M., Guimarães A.P., França T.C., Ramalho T.C. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis. J. Biomol. Struct. Dyn. 2012;30:125–136. doi: 10.1080/07391102.2012.674293. PubMed DOI

Martins T.L.C., Ramalho T.C., Figueroa-Villar J.D., Flores A.F.C., Pereira C.M.P. Theoretical and experimental C-13 and N-15 NMR investigation of guanylhydrazones in solution. Magn. Reson. Chem. 2013;41:983–988. doi: 10.1002/mrc.1299. DOI

De Castro A.A., Prandi I.G., Kamil K., Ramalho T.C. Organophosphorus degrading enzymes: Molecular basis and perspectives for enzymatic bioremediation of agrochemicals. Ciencia e Agrotecnologia. 2017;41:471–482.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...