Can Inhibitors of Snake Venom Phospholipases A₂ Lead to New Insights into Anti-Inflammatory Therapy in Humans? A Theoretical Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29068410
PubMed Central
PMC5705956
DOI
10.3390/toxins9110341
PII: toxins9110341
Knihovny.cz E-zdroje
- Klíčová slova
- experimental model, svPLA2, vanillic acid,
- MeSH
- antiflogistika chemie MeSH
- crotoxin metabolismus MeSH
- fosfolipasy A2, skupina II MeSH
- fosfolipasy A2 chemie MeSH
- inhibitory fosfolipasy A2 chemie MeSH
- jedy chřestýšů enzymologie MeSH
- kyselina vanilová chemie MeSH
- lidé MeSH
- sekvence aminokyselin MeSH
- simulace molekulového dockingu MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika MeSH
- bothropstoxin II MeSH Prohlížeč
- crotoxin MeSH
- fosfolipasy A2, skupina II MeSH
- fosfolipasy A2 MeSH
- inhibitory fosfolipasy A2 MeSH
- jedy chřestýšů MeSH
- kyselina vanilová MeSH
Human phospholipase A₂ (hPLA₂) of the IIA group (HGIIA) catalyzes the hydrolysis of membrane phospholipids, producing arachidonic acid and originating potent inflammatory mediators. Therefore, molecules that can inhibit this enzyme are a source of potential anti-inflammatory drugs, with different action mechanisms of known anti-inflammatory agents. For the study and development of new anti-inflammatory drugs with this action mechanism, snake venom PLA₂ (svPLA₂) can be employed, since the svPLA₂ has high similarity with the human PLA₂ HGIIA. Despite the high similarity between these secretory PLA₂s, it is still not clear if these toxins can really be employed as an experimental model to predict the interactions that occur with the human PLA₂ HGIIA and its inhibitors. Thus, the present study aims to compare and evaluate, by means of theoretical calculations, docking and molecular dynamics simulations, as well as experimental studies, the interactions of human PLA₂ HGIIA and two svPLA₂s,Bothrops toxin II and Crotoxin B (BthTX-II and CB, respectively). Our theoretical findings corroborate experimental data and point out that the human PLA₂ HGIIA and svPLA₂ BthTX-II lead to similar interactions with the studied compounds. From our results, the svPLA₂ BthTX-II can be used as an experimental model for the development of anti-inflammatory drugs for therapy in humans.
Biomedical Research Center University Hospital Hradec Kralove 500 05 Hradec Kralove Czech Republic
Department of Chemistry Federal University of Lavras P O Box 3037 37200 000 Lavras MG Brazil
Zobrazit více v PubMed
Joshi V. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase. Arch. Biochem. Biophys. 2016;598:28–39. doi: 10.1016/j.abb.2016.04.003. PubMed DOI
Silva P. Farmacologia. 8th ed. Guanabara Koogan; Rio de Janeiro, Brazil: 2010. 1024p
Muri E.M., Sposito M.M.M., Metsavaht L. Nonsteroidal antiinflammatory drugs and their local pharmacology. Acta Fisiatr. 2009;16:186–190.
Anelli M.G., Scioscia C., Grattagliano I., Lapadula G. Old and new antirheumatic drugs and the risk of hepatotoxicity. Ther. Drug Monit. 2012;34:622–628. doi: 10.1097/FTD.0b013e31826a6306. PubMed DOI
Rafaniello C., Ferrajolo C., Sullo M.G., Sessa M., Sportiello L., Balzano A., Manguso F., Aiezza M.L., Rossi F., Scarpignato C., et al. Risk of gastrointestinal complications associated to NSAIDs, low-dose aspirin and their combinations: Results of a pharmacovigilance reporting system. Pharm. Res. 2016;104:108–114. doi: 10.1016/j.phrs.2015.12.026. PubMed DOI
Yousefpour A., Iranagh S.A., Nademi Y., Modarress H. Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane. Int. J. Quant. Chem. 2013;113:1919–1930. doi: 10.1002/qua.24415. DOI
Cronstein B.N., Weissmann G. Targets for antiinflammatory drugs. Ann. Rev. Pharmacol. Toxicol. 1995;35:449–462. doi: 10.1146/annurev.pa.35.040195.002313. PubMed DOI
Gaddipati R.S., Raikundalia G.K., Mathai M.L. Dual and selective lipid inhibitors of cyclooxygenases and lipoxygenase: A molecular docking study. Med. Chem. Res. 2014;23:3389–3402. doi: 10.1007/s00044-014-0919-y. DOI
Peters-Golden M.D.M., Henderson M.D.W.R., Jr. Leukotrienes. N. Engl. J. Med. 2007;357:1841–1854. doi: 10.1056/NEJMra071371. PubMed DOI
Pyasi K., Tufvesson E., Moitra S. Evaluating the role of leukotriene-modifying drugs in asthma management: Are their benefits ‘losing in translation’? Pulm. Pharmacol. Ther. 2016;41:52–59. doi: 10.1016/j.pupt.2016.09.006. PubMed DOI
Quach N.D., Arnold R.D., Cummings B.S. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem. Pharmacol. 2014;90:338–348. doi: 10.1016/j.bcp.2014.05.022. PubMed DOI PMC
Tomankova V., Anzenbacher P., Anzenbacherova E. Effects of obesity on liver cytochromes P450 in various animal models. Biomed. Pap. Olomouc. 2017;161:144–151. doi: 10.5507/bp.2017.026. PubMed DOI
Lerch M.M., Adler G. Experimental animal-models of acute-pancreatitis. Int. J. Pancreatol. 1994;15:159–170. PubMed
Liu Y., Zeng B.H., Shang H.T., Cen Y.Y., Wei H. Bama Miniature Pigs (Sus scrofa domestica) as a Model for Drug Evaluation for Humans: Comparison of In Vitro Metabolism and In Vivo Pharmacokinetics of Lovastatin. Comp. Med. 2008;58:580–587. PubMed PMC
Prueksaritanont T. Use of In Vivo Animal Models to Assess Drug-Drug Interactions. Enzyme- and Transporter-Based Drug-Drug Interactions: Progress and Future Challenges. Pharm. Res. 2010;27:283–297. PubMed
Siltari A., Kivimäki A.S., Ehlers P.I., Korpela R., Vapaatalo H. Effects of Milk Casein Derived Tripeptides on Endothelial Enzymes In Vitro; a Study with Synthetic Tripeptides. Arzneimittelforschung. 2012;62:477–481. doi: 10.1055/s-0032-1321846. PubMed DOI
Marchi-Salvador D.P., Corrêa L.C., Magro A.J., Oliveira C.Z., Soares A.M., Fontes M.R. Insights into the role of oligomeric state on the biological activities of crotoxin: Crystal structure of a tetrameric phospholipase A2 formed by two isoforms of crotoxin B from Crotalus durissus terrificus venom. Proteins. 2008;72:883–891. doi: 10.1002/prot.21980. PubMed DOI
Dos Santos J.I., Cintra-Francischinelli M., Borges R.J., Fernandes C.A., Pizzo P., Cintra A.C., Braz A.S., Soares A.M., Fontes M.R. Structural, functional, and bioinformatics studies reveal a new snake venom homologue phospholipase A2 class. Proteins. 2011;79:61–78. doi: 10.1002/prot.22858. PubMed DOI
Teixeira C.F., Landucci E.C., Antunes E., Chacur M., Cury Y. Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon. 2003;42:947–962. doi: 10.1016/j.toxicon.2003.11.006. PubMed DOI
Marcussi S., Sant’Ana C.D., Oliveira C.Z., Rueda A.Q., Menaldo D.L., Beleboni R.O., Stabeli R.G., Giglio J.R., Fontes M.R., Soares A.M. Snake venom phospholipase A2 inhibitors: Medicinal chemistry and therapeutic potential. Curr. Top. Med. Chem. 2007;7:743–756. doi: 10.2174/156802607780487614. PubMed DOI
Kim R.R., Malde A.K., Nematollahi A., Scott K.F., Church W.B. Molecular dynamics simulations reveal structural insights into inhibitor binding modes and functionality in human Group IIA phospholipase A2. Proteins. 2017;85:827–842. doi: 10.1002/prot.25235. PubMed DOI
Batsanov S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001;37:1031–1046.
Da Cunha E.E., Barbosa E.F., Oliveira A.A., Ramalho T.C. Molecular modeling of Mycobacterium tuberculosis DNA gyrase and its molecular docking study with gatifloxacin inhibitors. J. Biomol. Struct. Dyn. 2010;27:619–625. doi: 10.1080/07391102.2010.10508576. PubMed DOI
Golçalves M.A., Santos L.S., Prata D.M., Fernando P.C., Cunha E.F.F., Ramalho T.C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Aplication to thermal and solvent effects of MRI probes. Theor. Chem. Acc. 2017;136:15. doi: 10.1007/s00214-016-2037-z. DOI
Dileep K.V., Remya C., Cerezo J., Fassihi A., Pérez-Sánchez H., Sadasivan C. Comparative studies on the inhibitory activities of selected benzoic acid derivatives against secretory phospholipase A2, a key enzyme involved in the inflammatory pathway. Mol. Biosyst. 2015;11:1973–1979. doi: 10.1039/C5MB00073D. PubMed DOI
Gutiérrez J.M., Avila C., Rojas E., Cerdas L. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon. 1998;26:411–413. doi: 10.1016/0041-0101(88)90010-4. PubMed DOI
Price M.F., Wilkinson I.D., Gentry L.O. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20:7–14. doi: 10.1080/00362178285380031. PubMed DOI
Huang X., Miller W., Huang X., Miller W. A time-efficient linear-space local similarity algorithm. Adv. Appl. Math. 1991;12:337–357. doi: 10.1016/0196-8858(91)90017-D. DOI
Consortium U. UniProt: A hub for protein information. Nucleic Acids Res. 2015;43:D204–D212. doi: 10.1093/nar/gku989. PubMed DOI PMC
Expasy. [(accessed on 23 October 2017)]; Available online: http://au.expasy.org/
UniProtKB Database. [(accessed on 23 October 2017)]; Available online: http://www.uniprot.org/
Hehre W.J., Deppmeier B.J., Klunzinger P.E. Pcspartanpro. Wavefunction, Inc.; Irvine, CA, USA: 1999.
Thomsen R., Christensen M.H. MolDock: A new technique for high-accuracy Molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Frisch M.J. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009.
Canzar S., El-Kebir M., Pool R., Elbassioni K., Mark A.E., Geerke D.P., Stougie L., Klau G.W. Charge group partitioning in biomolecular simulation. J. Comput. Biol. 2013;20:188–198. doi: 10.1089/cmb.2012.0239. PubMed DOI PMC
Automated Topology Builder (ATB) Server. [(accessed on 23 October 2017)]; Available online: http://compbio.biosci.uq.edu.au/atb/
Van Gunsteren W.F., Billeter S.R., Eising A.A., Hunenberger P.H., Krüger P., Mark A.E., Scott W.R.P., Tironi I.G. Biomolecular Simulation: The GROMOS96 Manual and User Guide. VDF Hochschulverlag AG an der ETH Zürich; Zurich, Switzerland: 1996.
Abraham M.J., Murtola T., Schulz R., Pall S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Caddigan E.J. VMD User’s Guide. University of Illinois; Beckman Institute; Urbana, IL, USA: 2004.
Edwards P.M. Origin 7.0: Scientific graphing and data analysis software. J. Chem. Inf. Comput. Sci. Wash. 2002;42:1270–1271. doi: 10.1021/ci0255432. DOI
Mancini D.T., Matos K.S., da Cunha E.F., Assis T.M., Guimarães A.P., França T.C., Ramalho T.C. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis. J. Biomol. Struct. Dyn. 2012;30:125–136. doi: 10.1080/07391102.2012.674293. PubMed DOI
Martins T.L.C., Ramalho T.C., Figueroa-Villar J.D., Flores A.F.C., Pereira C.M.P. Theoretical and experimental C-13 and N-15 NMR investigation of guanylhydrazones in solution. Magn. Reson. Chem. 2013;41:983–988. doi: 10.1002/mrc.1299. DOI
De Castro A.A., Prandi I.G., Kamil K., Ramalho T.C. Organophosphorus degrading enzymes: Molecular basis and perspectives for enzymatic bioremediation of agrochemicals. Ciencia e Agrotecnologia. 2017;41:471–482.