Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27200087
PubMed Central
PMC4859092
DOI
10.3389/fgene.2016.00079
Knihovny.cz E-zdroje
- Klíčová slova
- biological pathways, chronic lung diseases, high-throughput gene expression, lung cancers, pathway signal flow, self-organizing maps,
- Publikační typ
- časopisecké články MeSH
Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent.
Zobrazit více v PubMed
An C. H., Wang X. M., Lam H. C., Ifedigbo E., Washko G. R., Ryter S. W., et al. . (2012). TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L748–L757. 10.1152/ajplung.00102.2012 PubMed DOI PMC
Anbazhagan R., Tihan T., Bornman D. M., Johnston J. C., Saltz J. H., Weigering A., et al. . (1999). Classification of small cell lung cancer and pulmonary carcinoid by gene expression profiles. Cancer Res. 59, 5119–5122. PubMed
Arakelyan A., Aslanyan L., Boyajyan A. (2013). High-throughput gene expression analysis concepts and applications, in Genomics II - Bacteria, Viruses and Metabolic Pathways (iConcept Press Ltd.), 71–95. Available online at: https://www.iconceptpress.com/books/genomics-ii–bacteria-viruses-and-metabolic-pathways/14410061/
Arakelyan A., Kriegova E., Kubistova Z., Mrazek F., Kverka M., du Bois R. M., et al. . (2009). Protein levels of CC chemokine ligand (CCL)15, CCL16 and macrophage stimulating protein in patients with sarcoidosis. Clin. Exp. Immunol. 155, 457–465. 10.1111/j.1365-2249.2008.03832.x PubMed DOI PMC
Archontogeorgis K., Steiropoulos P., Tzouvelekis A., Nena E., Bouros D. (2012). Lung cancer and interstitial lung diseases: a systematic review. Pulm. Med. 2012:315918. 10.1155/2012/315918 PubMed DOI PMC
Barrett T., Troup D. B., Wilhite S. E., Ledoux P., Evangelista C., Kim I. F., et al. . (2011). NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res. 39, D1005–D1010. 10.1093/nar/gkq1184 PubMed DOI PMC
Bhattacharjee A., Richards W. G., Staunton J., Li C., Monti S., Vasa P., et al. . (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. U.S.A. 98, 13790–13795. 10.1073/pnas.191502998 PubMed DOI PMC
Binder H., Hopp L., Lembcke K., Wirth H. (2015). Personalized disease phenotypes from massive OMICs data (IGI Global; ). Available online at: http://www.igi-global.com/chapter/personalized-disease-phenotypes-from-massive-omics-data/121465/ (Accessed April 6, 2016).
Binder H., Wirth H. (2014). Analysis of large-scale OMIC data using self organizing maps, in Encyclopedia of Information Science and Technology, 3rd Edn., ed Khosrow-Pour M. (Hershey, PA: IGI Global; ), 1642–1654.
Binder H., Wirth H., Arakelyan A., Lembcke K., Tiys E., Ivanisenko V., et al. . (2014). Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics 15:S2. 10.1186/1471-2164-15-S12-S2 PubMed DOI PMC
Bourke S. J. (2006). Interstitial lung disease: progress and problems. Postgrad. Med. J. 82, 494–499. 10.1136/pgmj.2006.046417 PubMed DOI PMC
Buettner R., Wolf J., Thomas R. K. (2013). Lessons learned from lung cancer genomics: the emerging concept of individualized diagnostics and treatment. J. Clin. Oncol. 31, 1858–1865. 10.1200/JCO.2012.45.9867 PubMed DOI
Campbell J. D., McDonough J. E., Zeskind J. E., Hackett T. L., Pechkovsky D. V., Brandsma C.-A., et al. . (2012). A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK. Genome Med. 4:67. 10.1186/gm367 PubMed DOI PMC
Campbell J. D., Spira A., Lenburg M. E. (2011). Applying gene expression microarrays to pulmonary disease. Respirology 16, 407–418. 10.1111/j.1440-1843.2011.01942.x PubMed DOI
Cancer T., Atlas G. (2012). Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525. 10.1038/nature11404 PubMed DOI PMC
Cantor J. R., Sabatini D. M. (2012). Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2, 881–898. 10.1158/2159-8290.CD-12-0345 PubMed DOI PMC
Chilosi M., Poletti V., Rossi A. (2012). The pathogenesis of COPD and IPF: distinct horns of the same devil? Respir. Res. 13:3. 10.1186/1465-9921-13-3 PubMed DOI PMC
Cho J.-H., Gelinas R., Wang K., Etheridge A., Piper M. G., Batte K., et al. . (2011). Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med. Genomics 4:8. 10.1186/1755-8794-4-8 PubMed DOI PMC
Courtois G., Gilmore T. D. (2006). Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 25, 6831–6843. 10.1038/sj.onc.1209939 PubMed DOI
Covell D. G., Wallqvist A., Rabow A. A., Thanki N. (2003). Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data1. Mol. Cancer Ther. 2, 317–332. PubMed
Csardi G., Nepusz T. (2006). The igraph software package for complex network research. InterJ. Complex Syst. 1695. Available online at: http://www.interjournal.org/manuscript_abstract.php?361100992
Daigle B. J., Srinivasan B. S., Flannick J. A. (2010). Current progress in static and dynamic modeling of biological networks, in Signalling Networks. Available at: http://link.springer.com/chapter/10.1007%2F978-1-4419-5797-9_2
DePianto D., Chandriani S., Abbas A., Jia G., N'Diaye E., Caplazi P., et al. . (2015). Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax 70, 48–56. 10.1136/thoraxjnl-2013-204596 PubMed DOI PMC
Domagala-Kulawik J. (2015). The role of the immune system in non-small cell lung carcinoma and potential for therapeutic intervention. Transl. lung cancer Res. 4, 177–190. 10.3978/j.issn.2218-6751.2015.01.11 PubMed DOI PMC
Edgar R., Domrachev M., Lash A. E. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210. 10.1093/nar/30.1.207 PubMed DOI PMC
Eichler G. S., Huang S., Ingber D. E. (2003). Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles. Bioinformatics 19, 2321–2322. 10.1093/bioinformatics/btg307 PubMed DOI
Gerber D., Oxnard G., Govindan R. (2015). ALCHEMIST: bringing genomic discovery and targeted therapies to early-stage lung cancer. Clin. Pharmacol. Ther. 97, 447–450. 10.1002/cpt.91 PubMed DOI PMC
Golub T. R., Slonim D. K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J. P., et al. . (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537. 10.1126/science.286.5439.531 PubMed DOI
Gomez M., Gomez V., Hergovich A. (2014). The Hippo pathway in disease and therapy: cancer and beyond. Clin. Transl. Med. 3:22. 10.1186/2001-1326-3-22 PubMed DOI PMC
Halder G., Johnson R. L. (2011). Hippo signaling: growth control and beyond. Development 138, 9–22. 10.1242/dev.045500 PubMed DOI PMC
Han J., Tang F., Pu D., Xu D., Wang T., Li W. (2014). Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells. Tumori 100, 102–111. 10.1700/1430.15824 PubMed DOI
Haspel J. A., Choi A. M. K. (2011). Autophagy: a core cellular process with emerging links to pulmonary disease. Am. J. Respir. Crit. Care Med. 184, 1237–1246. 10.1164/rccm.201106-0966CI PubMed DOI PMC
Hopp L., Willscher E., Löffler-Wirth H., Binder H. (2015). Function shapes content: DNA-methylation marker genes and their impact for molecular mechanisms of glioma. J. Can. Res. Updates 4, 127–148. 10.6000/1929-2279.2015.04.04.1 DOI
Hopp L., Wirth H., Fasold M., Binder H. (2013). Portraying the expression landscapes of cancer subtypes: a glioblastoma multiforme and prostate cancer case study. Syst. Biomed. 1, 99–121. 10.4161/sysb.25897 DOI
Huang S., Eichler G., Bar-Yam Y., Ingber D. E. (2005). Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94:128701. 10.1103/physrevlett.94.128701 PubMed DOI
Kanehisa M. (2002). The KEGG database. Novartis Found. Symp. 247, 91–101. discussion 101–103, 119–128, 244–252. 10.1002/0470857897.ch8 PubMed DOI
Kohonen T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69. 10.1007/BF00337288 DOI
Kriegova E., Fillerova R., Tomankova T., Hutyrova B., Mrazek F., Tichy T., et al. . (2011). T-helper cell type-1 transcription factor T-bet is upregulated in pulmonary sarcoidosis. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 38, 1136–1144. 10.1183/09031936.00089910 PubMed DOI
Lee I. T., Yang C. M. (2013). Inflammatory signalings involved in airway and pulmonary diseases. Mediators Inflamm. 2013:791231. 10.1155/2013/791231 PubMed DOI PMC
Leng D., Huan C., Xie T., Liang J., Wang J., Dai H., et al. . (2013). Meta-analysis of genetic programs between idiopathic pulmonary fibrosis and sarcoidosis. PLoS ONE 8:e71059. 10.1371/journal.pone.0071059 PubMed DOI PMC
Leslie K. O. (2009). My approach to interstitial lung disease using clinical, radiological and histopathological patterns. J. Clin. Pathol. 62, 387–401. 10.1136/jcp.2008.059782 PubMed DOI PMC
Lewis C. C., Yang J. Y., Huang X., Banerjee S. K., Blackburn M. R., Baluk P., et al. . (2008). Disease-specific gene expression profiling in multiple models of lung disease. Am. J. Respir. Crit. Care Med. 177, 376–387. 10.1164/rccm.200702-333OC PubMed DOI PMC
Li J., Li D., Wei X. S. Y. (2014). In silico comparative genomic analysis of two non-small cell lung cancer subtypes and their potentials for cancer classification. Cancer Genomics Proteomics 11, 303–310. PubMed
Löffler-Wirth H., Kalcher M., Binder H. (2015). oposSOM: R-package for high-dimensional portraying of genome-wide expression landscapes on bioconductor. Bioinformatics 31, 3225–3227. 10.1093/bioinformatics/btv342 PubMed DOI
Logan C. Y., Nusse R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810. 10.1146/annurev.cellbio.20.010403.113126 PubMed DOI
Maertzdorf J., Weiner J., Mollenkopf H.-J., Network T., Bauer T., Prasse A., et al. . (2012). Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc. Natl. Acad. Sci. U.S.A. 109, 7853–7858. 10.1073/pnas.1121072109 PubMed DOI PMC
Meyer K. C., Raghu G., Baughman R. P., Brown K. K., Costabel U., Du Bois R. M., et al. . (2012). An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir. Crit. Care Med. 185, 1004–1014. 10.1164/rccm.201202-0320ST PubMed DOI
Nersisyan L., Johnson G., Riel-Mehan M., Pico A., Arakelyan A. (2015). PSFC: a pathway signal flow calculator app for cytoscape [v1; ref status: approved 1]. F1000Research 4:480. 10.12688/f1000research.6706.1 PubMed DOI PMC
Ogata H., Goto S., Sato K., Fujibuchi W., Bono H., Kanehisa M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34. 10.1093/nar/27.1.29 PubMed DOI PMC
Pabst S., Bradler O., Gillissen A., Nickenig G., Skowasch D., Grohe C. (2013). Toll-like receptor-9 polymorphisms in sarcoidosis and chronic obstructive pulmonary disease. Adv. Exp. Med. Biol. 756, 239–245. 10.1007/978-94-007-4549-0_30 PubMed DOI
Pennings J. L. A., Kimman T. G., Janssen R. (2008). Identification of a common gene expression response in different lung inflammatory diseases in rodents and macaques. PLoS ONE 3:e2596. 10.1371/journal.pone.0002596 PubMed DOI PMC
Pouladi N., Bime C., Garcia J. G. N., Lussier Y. A. (2015). Complex genetics of pulmonary diseases: lessons from genome-wide association studies and next-generation sequencing. Transl. Res. 168, 22–39. 10.1016/j.trsl.2015.04.016 PubMed DOI PMC
Pugazhendhi S., Jayakanthan K., Pulimood A. B., Ramakrishna B. S. (2013). Cytokine gene expression in intestinal tuberculosis and Crohn's disease. Int. J. Tuberc. Lung Dis. 17, 662–668. 10.5588/ijtld.12.0600 PubMed DOI
Rekhtman N. (2010). Neuroendocrine tumors of the lung: an update. Arch. Pathol. Lab. Med. 134, 1628–1638. 10.1043/2009-0583-RAR.1 PubMed DOI
Selman M., Pardo A., Barrera L., Estrada A., Watson S. R., Wilson K., et al. . (2006). Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am. J. Respir. Crit Care Med. 173, 188–198. 10.1164/rccm.200504-644OC PubMed DOI PMC
Steiner L., Hopp L., Wirth H., Galle J., Binder H., Prohaska S. J., et al. . (2012). A global genome segmentation method for exploration of epigenetic patterns. PLoS ONE 7:e46811. 10.1371/journal.pone.0046811 PubMed DOI PMC
Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., et al. . (1999). Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. U.S.A. 96, 2907–2912. 10.1073/pnas.96.6.2907 PubMed DOI PMC
Thakur R., Yadav V. K., Kumar A., Basundra R., Kar A., Halder R., et al. . (2014). Functional genomics of lung cancer progression reveals mechanism of metastasis suppressor function. Mol. Cytogenet. 7:I9. 10.1186/1755-8166-7-S1-I9 PubMed DOI PMC
Törönen P., Kolehmainen M., Wong G., Castrén E. (1999). Analysis of gene expression data using self-organizing maps. FEBS Lett. 451, 142–146. 10.1016/S0014-5793(99)00524-4 PubMed DOI
Vancheri C. (2013). Common pathways in idiopathic pulmonary fibrosis and cancer. Eur. Respir. Rev. 22, 265–272. 10.1183/09059180.00003613 PubMed DOI PMC
Wang I.-M., Stepaniants S., Boie Y., Mortimer J. R., Kennedy B., Elliott M., et al. . (2008). Gene expression profiling in patients with chronic obstructive pulmonary disease and lung cancer. Am. J. Respir. Crit. Care Med. 177, 402–411. 10.1164/rccm.200703-390OC PubMed DOI
West L., Vidwans S. J., Campbell N. P., Shrager J., Simon G. R., Bueno R., et al. . (2012). A novel classification of lung cancer into molecular subtypes. PLoS ONE 7:e31906. 10.1371/journal.pone.0031906 PubMed DOI PMC
Wirth H., Cakir M. V., Hopp L., Binder H. (2014). Analysis of microRNA expression using machine learning. Methods Mol. Biol. 1107, 257–278. 10.1007/978-1-62703-748-8_16 PubMed DOI
Wirth H., Loffler M., von Bergen M., Binder H. (2011). Expression cartography of human tissues using self organizing maps. BMC Bioinformatics 12:306. 10.1186/1471-2105-12-306 PubMed DOI PMC
Wirth H., von Bergen M., Binder H. (2012a). Mining SOM expression portraits: feature selection and integrating concepts of molecular function. BioData Min. 5:18. 10.1186/1756-0381-5-18 PubMed DOI PMC
Wirth H., von Bergen M., Murugaiyan J., Rösler U., Stokowy T., Binder H. (2012b). MALDI-typing of infectious algae of the genus Prototheca using SOM portraits. J. Microbiol. Methods 88, 83–97. 10.1016/j.mimet.2011.10.013 PubMed DOI
Xin M., Kim Y., Sutherland L. B., Murakami M., Qi X., McAnally J., et al. . (2013). Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl. Acad. Sci. U.S.A. 110, 13839–13844. 10.1073/pnas.1313192110 PubMed DOI PMC
Zhang B., Kirov S., Snoddy J. (2005). WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748. 10.1093/nar/gki475 PubMed DOI PMC