Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23193129
PubMed Central
PMC3574409
DOI
10.1098/rspb.2012.2387
PII: rspb.2012.2387
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- gametogeneze rostlin genetika MeSH
- genetická heterogenita * MeSH
- Magnoliopsida genetika MeSH
- modely genetické * MeSH
- ploidie * MeSH
- průtoková cytometrie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genome duplication (polyploidy) is a recurrent evolutionary process in plants, often conferring instant reproductive isolation and thus potentially leading to speciation. Outcome of the process is often seen in the field as different cytotypes co-occur in many plant populations. Failure of meiotic reduction during gametogenesis is widely acknowledged to be the main mode of polyploid formation. To get insight into its role in the dynamics of polyploidy generation under natural conditions, and coexistence of several ploidy levels, we developed a general gametic model for diploid-polyploid systems. This model predicts equilibrium ploidy frequencies as functions of several parameters, namely the unreduced gamete proportions and fertilities of higher ploidy plants. We used data on field ploidy frequencies for 39 presumably autopolyploid plant species/populations to infer numerical values of the model parameters (either analytically or using an optimization procedure). With the exception of a few species, the model fit was very high. The estimated proportions of unreduced gametes (median of 0.0089) matched published estimates well. Our results imply that conditions for cytotype coexistence in natural populations are likely to be less restrictive than previously assumed. In addition, rather simple models show sufficiently rich behaviour to explain the prevalence of polyploids among flowering plants.
Zobrazit více v PubMed
Van de Peer Y, Maere S, Meyer A. 2009. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10, 725–73210.1038/nrg2600 (doi:10.1038/nrg2600) PubMed DOI
Soltis DE, Soltis PS. 1999. Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 14, 348–35210.1016/S0169-5347(99)01638-9 (doi:10.1016/S0169-5347(99)01638-9) PubMed DOI
Soltis DE, et al. 2009. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–34810.3732/ajb.0800079 (doi:10.3732/ajb.0800079) PubMed DOI
Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–43710.1146/annurev.genet.34.1.401 (doi:10.1146/annurev.genet.34.1.401) PubMed DOI
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. USA 106, 13 875–13 87910.1073/pnas.0811575106 (doi:10.1073/pnas.0811575106) PubMed DOI PMC
Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–50110.1146/annurev.ecolsys.29.1.467 (doi:10.1146/annurev.ecolsys.29.1.467) DOI
Husband BC, Sabara HA. 2004. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). Am. J. Bot. 85, 1688–169410.1046/j.1469-8137.2003.00998.x (doi:10.1046/j.1469-8137.2003.00998.x) PubMed DOI
Rodríguez DJ. 1996. A model for the establishment of polyploidy in plants. Am. Nat. 147, 33–4610.1086/285838 (doi:10.1086/285838) DOI
Rodríguez DJ. 1996. A model for the establishment of polyploidy in plants: viable but infertile hybrids, iteroparity, and demographic stochasticity. J. Theor. Biol. 180, 189–19610.1006/jtbi.1996.0095 (doi:10.1006/jtbi.1996.0095) DOI
Husband BC. 2004. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol. J. Linn. Soc. 82, 537–54610.1111/j.1095-8312.2004.00339.x (doi:10.1111/j.1095-8312.2004.00339.x) DOI
Li B-H, Xu X-M, Ridout MS. 2004. Modelling the establishment and spread of autotetraploid plants in a spatially heterogeneous environment. J. Evol. Biol. 17, 562–57310.1111/j.1420-9101.2004.00700.x (doi:10.1111/j.1420-9101.2004.00700.x) PubMed DOI
Yamauchi A, Hosokawa A, Nagata H, Shimoda M. 2004. Triploid bridge and the role of parthenogenesis in the evolution of autopolyploidy. Am. Nat. 164, 101–11210.1086/421356 (doi:10.1086/421356) PubMed DOI
Rausch JH, Morgan MT. 2005. The effect of self-fertilization, inbreeding depression, and population size on autopolyploid establishment. Evolution 59, 1867–187510.1554/05-095.1 (doi:10.1554/05-095.1) PubMed DOI
Meyers LA, Levin DA. 2006. On the abundance of polyploids in flowering plants. Evolution 60, 1198–120610.1554/05-629.1 (doi:10.1554/05-629.1) PubMed DOI
Oswald BP, Nuismer SL. 2011. A unified model of autopolyploid establishment and evolution. Am. Nat. 178, 687–70010.1086/662673 (doi:10.1086/662673) PubMed DOI PMC
Levin DA. 1975. Minority cytotype exclusion in local plant populations. Taxon 24, 35–4310.2307/1218997 (doi:10.2307/1218997) DOI
Kron P, Suda J, Husband BC. 2007. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 38, 847–87610.1146/annurev.ecolsys.38.091206.095504 (doi:10.1146/annurev.ecolsys.38.091206.095504) DOI
Parisod C, Holderegger R, Brochmann C. 2010. Evolutionary consequences of autopolyploidy. New Phytol. 186, 5–1710.1111/j.1469-8137.2009.03142.x (doi:10.1111/j.1469-8137.2009.03142.x) PubMed DOI
Levin DA. 2002. The role of chromosomal change in plant evolution. New York, NY: Oxford University Press
R Development Core Team 2009. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (http://www.R-project.org).
Byrd RH, Lu P, Nocedal J, Zhu C. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comp. 16, 1190–120810.1137/0916069 (doi:10.1137/0916069) DOI
Ortiz R, Vorsa N, Bruederle LP, Laverty T. 1992. Occurrence of unreduced pollen in diploid blueberry species, Vaccinium sect. Cyanococcus. Theor. Appl. Genet. 85, 55–60 PubMed
Ramsey J. 2007. Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98, 143–15010.1038/sj.hdy.6800912 (doi:10.1038/sj.hdy.6800912) PubMed DOI
Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, Vít P, Kubešová M, Suda J. 2009. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann. Bot. 103, 963–97410.1093/aob/mcp016 (doi:10.1093/aob/mcp016) PubMed DOI PMC
Suda J, Lysák MA. 2001. A taxonomic study of the Vaccinium sect. Oxycoccus (Hill) W.D.J. Koch (Ericaceae) in the Czech Republic and adjacent territories. Folia Geobot. 36, 303–31910.1007/BF02803183 (doi:10.1007/BF02803183) DOI
Trávníček P, Dočkalová Z, Rosenbaumová R, Kubátová B, Szeląg Z, Chrtek J. 2011. Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in Central Europe. Ann. Bot. 107, 443–45410.1093/aob/mcq260 (doi:10.1093/aob/mcq260) PubMed DOI PMC
Ramsey J, Schemske DW. 2002. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–63910.1146/annurev.ecolysis.33.010802.150437 (doi:10.1146/annurev.ecolysis.33.010802.150437) DOI
Felber F. 1991. Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. J. Evol. Biol. 4, 195–20710.1046/j.1420-9101.1991.4020195.x (doi:10.1046/j.1420-9101.1991.4020195.x) DOI