Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data

. 2013 Jan 22 ; 280 (1751) : 20122387.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23193129

Genome duplication (polyploidy) is a recurrent evolutionary process in plants, often conferring instant reproductive isolation and thus potentially leading to speciation. Outcome of the process is often seen in the field as different cytotypes co-occur in many plant populations. Failure of meiotic reduction during gametogenesis is widely acknowledged to be the main mode of polyploid formation. To get insight into its role in the dynamics of polyploidy generation under natural conditions, and coexistence of several ploidy levels, we developed a general gametic model for diploid-polyploid systems. This model predicts equilibrium ploidy frequencies as functions of several parameters, namely the unreduced gamete proportions and fertilities of higher ploidy plants. We used data on field ploidy frequencies for 39 presumably autopolyploid plant species/populations to infer numerical values of the model parameters (either analytically or using an optimization procedure). With the exception of a few species, the model fit was very high. The estimated proportions of unreduced gametes (median of 0.0089) matched published estimates well. Our results imply that conditions for cytotype coexistence in natural populations are likely to be less restrictive than previously assumed. In addition, rather simple models show sufficiently rich behaviour to explain the prevalence of polyploids among flowering plants.

Zobrazit více v PubMed

Van de Peer Y, Maere S, Meyer A. 2009. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10, 725–73210.1038/nrg2600 (doi:10.1038/nrg2600) PubMed DOI

Soltis DE, Soltis PS. 1999. Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 14, 348–35210.1016/S0169-5347(99)01638-9 (doi:10.1016/S0169-5347(99)01638-9) PubMed DOI

Soltis DE, et al. 2009. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–34810.3732/ajb.0800079 (doi:10.3732/ajb.0800079) PubMed DOI

Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–43710.1146/annurev.genet.34.1.401 (doi:10.1146/annurev.genet.34.1.401) PubMed DOI

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. USA 106, 13 875–13 87910.1073/pnas.0811575106 (doi:10.1073/pnas.0811575106) PubMed DOI PMC

Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–50110.1146/annurev.ecolsys.29.1.467 (doi:10.1146/annurev.ecolsys.29.1.467) DOI

Husband BC, Sabara HA. 2004. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). Am. J. Bot. 85, 1688–169410.1046/j.1469-8137.2003.00998.x (doi:10.1046/j.1469-8137.2003.00998.x) PubMed DOI

Rodríguez DJ. 1996. A model for the establishment of polyploidy in plants. Am. Nat. 147, 33–4610.1086/285838 (doi:10.1086/285838) DOI

Rodríguez DJ. 1996. A model for the establishment of polyploidy in plants: viable but infertile hybrids, iteroparity, and demographic stochasticity. J. Theor. Biol. 180, 189–19610.1006/jtbi.1996.0095 (doi:10.1006/jtbi.1996.0095) DOI

Husband BC. 2004. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol. J. Linn. Soc. 82, 537–54610.1111/j.1095-8312.2004.00339.x (doi:10.1111/j.1095-8312.2004.00339.x) DOI

Li B-H, Xu X-M, Ridout MS. 2004. Modelling the establishment and spread of autotetraploid plants in a spatially heterogeneous environment. J. Evol. Biol. 17, 562–57310.1111/j.1420-9101.2004.00700.x (doi:10.1111/j.1420-9101.2004.00700.x) PubMed DOI

Yamauchi A, Hosokawa A, Nagata H, Shimoda M. 2004. Triploid bridge and the role of parthenogenesis in the evolution of autopolyploidy. Am. Nat. 164, 101–11210.1086/421356 (doi:10.1086/421356) PubMed DOI

Rausch JH, Morgan MT. 2005. The effect of self-fertilization, inbreeding depression, and population size on autopolyploid establishment. Evolution 59, 1867–187510.1554/05-095.1 (doi:10.1554/05-095.1) PubMed DOI

Meyers LA, Levin DA. 2006. On the abundance of polyploids in flowering plants. Evolution 60, 1198–120610.1554/05-629.1 (doi:10.1554/05-629.1) PubMed DOI

Oswald BP, Nuismer SL. 2011. A unified model of autopolyploid establishment and evolution. Am. Nat. 178, 687–70010.1086/662673 (doi:10.1086/662673) PubMed DOI PMC

Levin DA. 1975. Minority cytotype exclusion in local plant populations. Taxon 24, 35–4310.2307/1218997 (doi:10.2307/1218997) DOI

Kron P, Suda J, Husband BC. 2007. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 38, 847–87610.1146/annurev.ecolsys.38.091206.095504 (doi:10.1146/annurev.ecolsys.38.091206.095504) DOI

Parisod C, Holderegger R, Brochmann C. 2010. Evolutionary consequences of autopolyploidy. New Phytol. 186, 5–1710.1111/j.1469-8137.2009.03142.x (doi:10.1111/j.1469-8137.2009.03142.x) PubMed DOI

Levin DA. 2002. The role of chromosomal change in plant evolution. New York, NY: Oxford University Press

R Development Core Team 2009. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (http://www.R-project.org).

Byrd RH, Lu P, Nocedal J, Zhu C. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comp. 16, 1190–120810.1137/0916069 (doi:10.1137/0916069) DOI

Ortiz R, Vorsa N, Bruederle LP, Laverty T. 1992. Occurrence of unreduced pollen in diploid blueberry species, Vaccinium sect. Cyanococcus. Theor. Appl. Genet. 85, 55–60 PubMed

Ramsey J. 2007. Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98, 143–15010.1038/sj.hdy.6800912 (doi:10.1038/sj.hdy.6800912) PubMed DOI

Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, Vít P, Kubešová M, Suda J. 2009. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann. Bot. 103, 963–97410.1093/aob/mcp016 (doi:10.1093/aob/mcp016) PubMed DOI PMC

Suda J, Lysák MA. 2001. A taxonomic study of the Vaccinium sect. Oxycoccus (Hill) W.D.J. Koch (Ericaceae) in the Czech Republic and adjacent territories. Folia Geobot. 36, 303–31910.1007/BF02803183 (doi:10.1007/BF02803183) DOI

Trávníček P, Dočkalová Z, Rosenbaumová R, Kubátová B, Szeląg Z, Chrtek J. 2011. Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in Central Europe. Ann. Bot. 107, 443–45410.1093/aob/mcq260 (doi:10.1093/aob/mcq260) PubMed DOI PMC

Ramsey J, Schemske DW. 2002. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–63910.1146/annurev.ecolysis.33.010802.150437 (doi:10.1146/annurev.ecolysis.33.010802.150437) DOI

Felber F. 1991. Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. J. Evol. Biol. 4, 195–20710.1046/j.1420-9101.1991.4020195.x (doi:10.1046/j.1420-9101.1991.4020195.x) DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...