bayesian phylogenetic models
Dotaz
Zobrazit nápovědu
Divergence-time estimation based on molecular phylogenies and the fossil record has provided insights into fundamental questions of evolutionary biology. In Bayesian node dating, phylogenies are commonly time calibrated through the specification of calibration densities on nodes representing clades with known fossil occurrences. Unfortunately, the optimal shape of these calibration densities is usually unknown and they are therefore often chosen arbitrarily, which directly impacts the reliability of the resulting age estimates. As possible solutions to this problem, two nonexclusive alternative approaches have recently been developed, the “fossilized birth–death” (FBD) model and “total-evidence dating.” While these approaches have been shown to perform well under certain conditions, they require including all (or a random subset) of the fossils of each clade in the analysis, rather than just relying on the oldest fossils of clades. In addition, both approaches assume that fossil records of different clades in the phylogeny are all the product of the same underlying fossil sampling rate, even though this rate has been shown to differ strongly between higher level taxa. We here develop a flexible new approach to Bayesian age estimation that combines advantages of node dating and the FBD model. In our new approach, calibration densities are defined on the basis of first fossil occurrences and sampling rate estimates that can be specified separately for all clades. We verify our approach with a large number of simulated data sets, and compare its performance to that of the FBD model. We find that our approach produces reliable age estimates that are robust to model violation, on par with the FBD model. By applying our approach to a large data set including sequence data from over 1000 species of teleost fishes as well as 147 carefully selected fossil constraints, we recover a timeline of teleost diversification that is incompatible with previously assumed vicariant divergences of freshwater fishes. Our results instead provide strong evidence for transoceanic dispersal of cichlids and other groups of teleost fishes.
- MeSH
- Bayesova věta MeSH
- biodiverzita MeSH
- biologické modely * MeSH
- čas MeSH
- cichlidy klasifikace MeSH
- fylogeneze * MeSH
- vznik druhů (genetika) MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Atlantský oceán MeSH
The family Gyrodactylidae contains one of the most significant radiations of platyhelminth fish parasites. The so-called hyperviviparity is very rare in the animal kingdom, and the rapid generation time can lead to an explosive population growth, which can cause massive losses in farmed fish. Here we present the first molecular phylogeny including all-but-one African genera, inferred from ITS and 18S rDNA sequences. The validity of nominal genera is discussed in relation to the systematic value of morphological characters traditionally used for generic identification. New complete 18S rDNA sequences of 18 gyrodactylid species of eight genera together with ITS rDNA gene sequences of eight species representing seven genera were generated and complemented with GenBank sequences. The maximum likelihood and Bayesian analyses pointed to a paraphyletic nature of African Gyrodactylus species. They formed well-supported clades possibly indicating speciation within host taxa: (1) parasites of cichlids (Cichlidae); (2) parasites of catfishes (Siluriformes), consisting of a lineage infecting mochokids and one infecting clariids. Macrogyrodactylus spp. firmly clustered into a monophyletic group. We found that Swingleus and Fundulotrema are very closely related and clearly cluster within Gyrodactylus. This supports earlier claims as to the paraphyly of the nominal genus Gyrodactylus as it is currently defined, and necessitates a revision of Swingleus and Fundulotrema. Molecular dating estimates confirmed a relatively young, certainly post-Gondwanan, origin of gyrodactylid lineages. Building on the previously suggested South-American origin of viviparous gyrodactylids, the dataset suggests subsequent intercontinental dispersal to Africa and from there repeated colonisation of the Holarctic. Even though the African continent has been heavily under sampled, the present diversity is far greater than in the intensively studied European fauna, probably because of the high endemicity of sub-Saharan Africa.
- MeSH
- Bayesova věta MeSH
- cichlidy parazitologie MeSH
- fylogeneze * MeSH
- mezerníky ribozomální DNA genetika MeSH
- modely genetické MeSH
- nemoci ryb parazitologie MeSH
- ploštěnci klasifikace genetika MeSH
- pravděpodobnostní funkce MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- sumci parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
BACKGROUND: The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from the loosely associated commensals, often designated as secondary (S) symbionts, to obligate mutualists, called primary (P) symbionts. Determination of the evolutionary processes behind this phenomenon has long been hampered by the unreliability of phylogenetic reconstructions within this group of bacteria. The main reasons have been the absence of sufficient data, the highly derived nature of the symbiont genomes and lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to cluster as a monophyletic group. This state of phylogenetic uncertainty is now improving with an increasing number of complete bacterial genomes and development of new methods. In this study, we address the monophyly versus polyphyly of enterobacterial symbionts by exploring a multigene matrix within a complex phylogenetic framework. RESULTS: We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69 orthologous genes with no missing data) and analyzed both nucleic and amino acid data sets using several probabilistic methods. We particularly focused on the long-branch attraction-reducing methods, such as a nucleotide and amino acid data recoding and exclusion (including our new approach and slow-fast analysis), taxa exclusion and usage of complex evolutionary models, such as nonhomogeneous model and models accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our data strongly suggest independent origins of four symbiotic clusters; the first is formed by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the Erwinia and Pantoea clade. CONCLUSIONS: The results of this study confirm the efficiency of several artifact-reducing methods and strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae. Interestingly, the model species of symbiotic bacteria research, Buchnera and Wigglesworthia, originated from closely related, but different, ancestors. The possible origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are suggested, as well as the role of facultative secondary symbionts as a source of bacteria that can gradually become obligate maternally transferred symbionts.
- MeSH
- Bayesova věta MeSH
- Buchnera genetika fyziologie MeSH
- DNA bakterií genetika MeSH
- Enterobacteriaceae genetika fyziologie MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- molekulární evoluce MeSH
- symbióza MeSH
- Wigglesworthia genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Murid rodents (Rodentia: Muridae) represent the most diverse and abundant mammalian family. In this study, we provide a refined set of fossil calibrations which is used to reconstruct a dated phylogeny of the family using a multilocus dataset (six nuclear and nine mitochondrial gene fragments) encompassing 161 species representing 82 murid genera from four extant subfamilies (Deomyinae, Gerbillinae, Lophiomyinae and Murinae). In comparison with previous studies on murid or muroid rodents, our work stands out for the implementation of nine robust fossil constraints within the Muridae thanks to a thorough review of the fossil record. Before being assigned to specific nodes of the phylogeny, all potential fossil constraints were carefully assessed; they were also subjected to several cross-validation analyses. The resulting phylogeny is consistent with previous phylogenetic studies on murids, and recovers the monophyly of all sampled murid subfamilies and tribes. Based on nine controlled fossil calibrations, our inferred temporal timeframe indicates that the murid family likely originated in the course of the Early Miocene, 22.0-17.0 million years ago (Ma), and that most major lineages (i.e. tribes) started diversifying ca. 10 Ma. Historical biogeography analyses support the tropical origin for the family, with an initial internal split (vicariance event) between Afrotropical and Oriental (Indomalaya and Philippines) lineages. During the course of their diversification, the biogeographic pattern of murids is marked by several dispersal events toward the Australasian and the Palearctic regions. The Afrotropical region was also secondarily colonized at least three times from the Indomalaya, indicating that the latter region has acted as a major centre of diversification for the family.
- MeSH
- Bayesova věta MeSH
- časové faktory MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- kalibrace MeSH
- Muridae klasifikace MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In order to clarify the phylogenetic relationships among the main marine myxosporean clades including newly established Ceratonova clade and scrutinizing their evolutionary origins, we performed large-scale phylogenetic analysis of all myxosporean species from the marine myxosporean lineage based on three gene analyses and statistical topology tests. Furthermore, we obtained new molecular data for Ceratonova shasta, C. gasterostea, eight Ceratomyxa species and one Myxodavisia species. We described five new species: Ceratomyxa ayami n. sp., C. leatherjacketi n. sp., C. synaphobranchi n. sp., C. verudaensis n. sp. and Myxodavisia bulani n. sp.; two of these formed a new, basal Ceratomyxa subclade. We identified that the Ceratomyxa clade is basal to all other marine myxosporean lineages, and Kudoa with Enteromyxum are the most recently branching clades. Topologies were least stable at the nodes connecting the marine urinary clade, the marine gall bladder clade and the Ceratonova clade. Bayesian inference analysis of SSU rDNA and the statistical tree topology tests suggested that Ceratonova is closely related to the Enteromyxum and Kudoa clades, which represent a large group of histozoic species. A close relationship between Ceratomyxa and Ceratonova was not supported, despite their similar myxospore morphologies. Overall, the site of sporulation in the vertebrate host is a more accurate predictor of phylogenetic relationships than the morphology of the myxospore.
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- fylogeneze * MeSH
- modely genetické MeSH
- Myxozoa klasifikace MeSH
- pravděpodobnostní funkce MeSH
- ribozomální DNA genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We have revisited the mtDNA phylogeny of the bank vole Clethrionomys glareolus based on Sanger and next-generation Illumina sequencing of 32 complete mitochondrial genomes. The bank vole is a key study species for understanding the response of European fauna to the climate change following the Last Glacial Maximum (LGM) and one of the most convincing examples of a woodland mammal surviving in cryptic northern glacial refugia in Europe. The genomes sequenced included multiple representatives of each of the eight bank vole clades previously described based on cytochrome b (cob) sequences. All clades with the exception of the Basque - likely a misidentified pseudogene clade - were highly supported in all phylogenetic analyses and the relationships between the clades were resolved with high confidence. Our data extend the distribution of the Carpathian clade, the marker of a northern glacial refugium in the Carpathian Mountains, to include Britain and Fennoscandia (but not adjacent areas of continental Europe). The Carpathian sub-clade that colonized Britain and Fennoscandia had a somewhat different history from the sub-clade currently found in or close to the Carpathians and may have derived from a more north-westerly refugial area. The two bank vole populations that colonized Britain at the end of the last glaciation are for the first time linked with particular continental clades, the first colonists with the Carpathian clade and the second colonists with the western clade originating in a more southerly refugium in the vicinity of the Alps. We however found no evidence that a functional divergence of proteins encoded in the mitochondrial genome promoted the partial genetic replacement of the first colonists by the second colonists detected previously in southern Britain. We did identify one codon site that changed more often and more radically in the tree than expected and where the observed amino acid change may affect the reductase activity of the cytochrome bc1 complex, but the change was not specific to a particular clade. We also found an excess of radical changes to the primary protein structure for geographically restricted clades from southern Italy and Norway, respectively, possibly related to stronger selective pressure at the latitudinal extremes of the bank vole distribution. However, overall, we find little evidence of pervasive effects of deviation from neutrality on bank vole mtDNA phylogeography.
- MeSH
- Arvicolinae klasifikace genetika MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- cytochromy b genetika MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genetická variace MeSH
- genom mitochondriální MeSH
- klimatické změny MeSH
- mitochondriální DNA genetika MeSH
- modely genetické MeSH
- pravděpodobnostní funkce MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Macroevolutionary studies recently shifted from only reconstructing the past state, i.e. the species phylogeny, to also infer the past speciation and extinction dynamics that gave rise to the phylogeny. Methods for estimating diversification dynamics are sensitive towards incomplete species sampling. We introduce a method to estimate time-dependent diversification rates from phylogenies where clades of a particular age are represented by only one sampled species. A popular example of this type of data is phylogenies on the genus- or family-level, i.e. phylogenies where one species per genus or family is included. We conduct a simulation study to validate our method in a maximum-likelihood framework. Further, this method has already been introduced into the Bayesian package MrBayes, which led to new insights into the evolution of Hymenoptera.
Flies in the genus Campsicnemus have diversified into the second-largest adaptive radiation of Diptera in the Hawaiian Islands, with 179 Hawaiian endemic species currently described. Here we present the first phylogenetic analysis of Campsicnemus, with a focus on the Hawaiian fauna. We analyzed a combination of two nuclear (CAD, EF1α) and five mitochondrial (COI, COII, 12S, 16S, ND2) loci using Bayesian and maximum likelihood approaches to generate a phylogenetic hypothesis for the genus Campsicnemus. Our sampling included a total of 84 species (6 species from Europe, 1 from North America, 7 species from French Polynesia and 70 species from the Hawaiian Islands). The phylogenies were used to estimate divergence times, reconstruct biogeographic history, and infer ancestral ecological associations within this large genus. We found strong support for a South Pacific+Hawaiian clade, as well as for a monophyletic Hawaiian lineage. Divergence time estimates suggest that Hawaiian Islands were colonized approximately 4.6 million years ago, suggesting that most of the diversity within Campsicnemus evolved since the current high islands began forming ∼5 million years ago. We also observe a novel ecotype within the Pacific Campsicnemus; a widespread obligate water-skating form that has arisen multiple times across the Pacific Islands. Together, these analyses suggest that a combination of ecological, biogeographic and temporal factors have led to the impressive diversity of long-legged flies in Hawaii and elsewhere in the Pacific.
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- Diptera klasifikace genetika MeSH
- fylogeneze * MeSH
- mitochondriální DNA genetika MeSH
- modely genetické MeSH
- pravděpodobnostní funkce MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Havajské ostrovy MeSH
- Polynésie MeSH
Micrasterias, the name of which is derived from the Greek for 'little star', comprises possibly the most spectacularly shaped desmids (Desmidiales, Streptophyta). Presently, the genus Micrasterias includes about 60 traditional species, the majority of which were described in the early 19th century. We used a comprehensive multigene dataset (including SSU rDNA, psaA, and coxIII loci) of 34 Micrasterias taxa to assess the relationships between individual morphological species. The resulting phylogeny was used to assess the patterns characterizing the morphological evolution of this genus. The phylogenetic analysis led to the recognition of eight well-resolved lineages that could be characterized by selected morphological features. Apart from the members of Micrasterias, three species belonged to different traditional desmid genera (Cosmarium, Staurodesmus, and Triploceras) and were inferred to be nested within the genus. Morphological comparisons of these species with their relatives revealed an accelerated rate of morphological evolution. Mapping morphological diversification of the genus on the phylogenetic tree revealed profound differences in the phylogenetic signal of selected phenotypic features. Whereas the branching pattern of the cells clearly correlated with the phylogeny, cell complexity possibly reflected rather their adaptive morphological responses to environmental conditions. Finally, ancestral reconstruction of distribution patterns indicated potential origin of the genus in North America, with additional speciation events occurring in the Indo-Malaysian region.
- MeSH
- Bayesova věta MeSH
- databáze genetické MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetické lokusy genetika MeSH
- malé podjednotky ribozomu genetika MeSH
- Micrasterias anatomie a histologie genetika MeSH
- modely genetické MeSH
- ribozomální DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. METHODOLOGY/PRINCIPAL FINDINGS: To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 ("phyteumoid") clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. CONCLUSIONS/SIGNIFICANCE: Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number of early wood vessels of large diameter, thinner cell-walls and alternate intervessel pits, while the opposite trend was found in small Arctic and alpine taxa. This supports the existing generalization that narrower vessels allow plants to grow in colder places where they can avoid freezing-induced embolism, while taller plants have wider vessels to minimize hydraulic resistance with their greater path lengths.
- MeSH
- Bayesova věta MeSH
- biologická adaptace genetika fyziologie MeSH
- biologická evoluce * MeSH
- Campanulaceae anatomie a histologie MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- fylogeneze * MeSH
- modely genetické MeSH
- stonky rostlin anatomie a histologie MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH